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SweepSAR Technique
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Receive ) .
transmit and receive

SweepSAR TGChnlque ~*’ events are collocated
— increased swath and resolution "\ On receive, echos of each
. . ' array elementis
— TRM drives single feed array element

. processed individually
— digitally rcvrs + on-board cal & Transmit Vielding maximum gain
on-orbit beamforming

Challenges:
— high rx duty cycle (near 100%)

— shorter, high peak power transmit
pulse to achieve SNR

SweepSAR requires high-power
and high efficiency PAs

GaN is a key enabling technology

On transmit, all feed array elements are
illuminated creating the wide elevation beam
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HPA requirements:
proposed DESDynl SAR Instrument >100 W o
« > 60 % efficiency
e compact
» passive thermal management
 reliable
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GaN HEMT Technology
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Wide bandgap material
— high breakdown (10 X GaAs)
— high power density (5 X GaAs)

Bandgap engineering with AlGaN / GaN layers
SiC substrate — low thermal resistance
« Low parasitic capacitance — high efficiency amplifier modes

Advanced GaN HEMTs

— field plate to control electric field on gate

2D Electron Gas
(2DEG)
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Large Signal Characterization
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« Load-pull characterize non-linear device response
— presents impedances to the DUT at fundamental and harmonics

* In large signal, linear approximation not valid

Ips(Vas) ~ips(Vas) + a1vgs + agvy, + agvy, + - -

« Performance is non-linear (cannot use s-parameters) and
depends on impedance presented to device
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Load-pull Techniques
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« Traditional passive Load-pull uses mechanical tuners to
present reflection to device

 Active load-pull uses injection amplifiers to obtain I'
— closed loop uses signal from DUT
— open loop uses synchronous AWG source

injection

Y ACtive Open Ioop AWG source bias tee amplifier AWG source
— complex modulated waveforms @_{ our>—
— harmonic control

Open loop active load pull

— high T

RF source biastee  coupler injection amplitude and phase
amplifier control

PR [@E

Closed loop active load pull
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Open Loop Active Load-pull
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« Mixed-Signal Active Load-pull (MSALPS) developed by
Anteverta-mw and Maury Microwave

* 4 tuning loops — source fo, load fo, 2 fo, and 3 fo

* Measurement procedure: —~
AW AD NI PXI Chassis
— samples a and b waves ¢
. . . source fo | | load 3fo
— iterates to achieve impedance | szt
— measures large signal performance
g g p - [ - l . [ | I |7 ]PA@2fo,3fo
PA@ fo at b1 524
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MSALPS capabilities
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 Real-time mode allows rapid characterization of multiple impedances
— reduces characterization time (hours to minutes)
 Load-pull modulated signals
— AWSGs allow for inject single tone or complex signals
— simulate pulsed chirp waveform response
— perform frequency dependent load-pull
* Phase reference
— calculate dynamic voltage and current
— determine class of operation, peak currents and voltages, optimize waveform
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o High-Power Test Fixture Design
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« Active load-pull requires high-power injection amplifiers
— 120 W device with a 50 Q system impedance = 700 W injection amp!
— 10 Q transforming fixture ¥ 100 W injection amplifier

» Test fixture design requirements

— 50 Qto 10 Q transition - wide bandwidth
— low-loss - integrated high-power bias

&= Input Match Swp Max
+ Output Match 5000MHz

]- Klopfenstein taper




DUT Stability and Feedback
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* Device stability a concern for high power devices
— Large device = low impedance prone to oscillations
— High-power could exceed thermal rating = catastrophic failures

« Feedback network to improve low frequency stability —ww—"

Swp Max
5000MHz
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Source match
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« GaN HEMTs = low input impedance

— Trade-off between gain, stability, and bandwidth

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
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N Load tuning
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* Load-pull with no harmonic control
- P, ~ 50 dBm
— PAE > 50 %
— Harmonic levels ~ 30 dBm (~20 dBc)
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Harmonic tuning
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« swept harmonic at ' = 0.8 over all phase angles
— optimal harmonic impedances will be reflective

— harmonic levels reduced to below 30 dBc

— PAE improved to over 70 %
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Proposed HPA Topology
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 Transitioned to new GaN HEMT vendor

« Two-stage HPA design
— 8-10 W GaN HEMT 1st stage
— 120 W GaN HEMT 2" stage

— Input, interstage, and output
matching networks on TMM 6

_____________ 4
— 10 Q interstage matching | +24 dBm +36 dBm >50 dBm
. Input _ Interstage Output
+ Separate DC bias / control board | v BAOW vaching 120W aching

— drain switching
— gate dropout protection

'_'—'l =71 DCBias and Switch
: control board
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G 8W to 100W interstage match
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1325MHz
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100 W Output match
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New part has
slightly lower PAE



o\ Overview TRM Configuration
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HPA chassis

Radiator side

Cavity Side

HPA Module

© 2013 California Institute of Technology. Government sponsorship acknowledged.



Thermal Design
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Radiator Sizing for TRM
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Conclusions
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« SweepSAR requires high peak power, high-efficiency HPA
— GaN HEMT technology
— Active Load-pull system for high-efficiency design
« Complexities of Load-pulling high power part
— Test fixture design
— Stability enhancement techniques
 Load-pull results on 100 W GaN HEMT
— ~ 50 dBm output power
— ~70 % PAE
— Harmonic levels improved to below 30 dBc with harmonic tuning
« Rev 1 HPA measured results
— ~ 50 dBm Pout
— ~60 % PAE
— 30 dBc harmonic levels
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