Design of an Ultra-High Efficiency GaN High-Power Amplifier for SAR Remote Sensing

Tushar Thrivikraman
James Hoffman

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr., Pasadena, CA 91109
Tushar.Thrivikraman@jpl.nasa.gov

IEEE Aerospace Conference, 2013
Big Sky, Montana
SweepSAR Technique

- increased swath and resolution
- TRM drives single feed array element
- digitally rcvrs + on-board cal ➔ on-orbit beamforming

Challenges:
- high rx duty cycle (near 100%)
- shorter, high peak power transmit pulse to achieve SNR

SweepSAR requires high-power and high efficiency PAs

GaN is a key enabling technology

On transmit, all feed array elements are illuminated creating the wide elevation beam
Proposed DESDynI SAR instrument

- Reflector
- Antenna feed array
- Notional TRM Block diagram
- 12 High power TRMs / pol
- HPA requirements:
 - > 100 W
 - > 60 % efficiency
 - compact
 - passive thermal management
 - reliable

GaN HEMT Technology

- Wide bandgap material
 - high breakdown (10 X GaAs)
 - high power density (5 X GaAs)
- Bandgap engineering with AlGaN / GaN layers
- SiC substrate – low thermal resistance
- Low parasitic capacitance – high efficiency amplifier modes
- Advanced GaN HEMTs
 - field plate to control electric field on gate
Large Signal Characterization

- Load-pull characterize non-linear device response
 - presents impedances to the DUT at fundamental and harmonics
- In large signal, linear approximation not valid
 \[I_{DS}(V_{GS}) \approx i_{DS}(V_{GS}) + a_1 v_{gs} + a_2 v_{gs}^2 + a_3 v_{gs}^3 + \cdots \]
- Performance is non-linear (cannot use s-parameters) and depends on impedance presented to device
Load-pull Techniques

- Traditional passive Load-pull uses mechanical tuners to present reflection to device
- Active load-pull uses injection amplifiers to obtain Γ
 - closed loop uses signal from DUT
 - open loop uses synchronous AWG source
- Active open loop
 - complex modulated waveforms
 - harmonic control
 - high Γ
Open Loop Active Load-pull

- Mixed-Signal Active Load-pull (MSALPS) developed by Anteverta-mw and Maury Microwave
- 4 tuning loops – source f_0, load f_0, $2f_0$, and $3f_0$
- Measurement procedure:
 - samples a and b waves
 - iterates to achieve impedance
 - measures large signal performance
MSALPS capabilities

- **Real-time mode allows rapid characterization of multiple impedances**
 - reduces characterization time (hours to minutes)
- **Load-pull modulated signals**
 - AWGs allow for inject single tone or complex signals
 - simulate pulsed chirp waveform response
 - perform frequency dependent load-pull
- **Phase reference**
 - calculate dynamic voltage and current
 - determine class of operation, peak currents and voltages, optimize waveform
High-Power Test Fixture Design

- **Active load-pull requires high-power injection amplifiers**
 - 120 W device with a 50 Ω system impedance ➔ **700 W injection amp**!
 - 10 Ω transforming fixture ➔ **100 W injection amplifier**

- **Test fixture design requirements**
 - 50 Ω to 10 Ω transition - wide bandwidth
 - low-loss - integrated high-power bias

DUT Stability and Feedback

- Device stability a concern for high power devices
 - Large device \rightarrow low impedance prone to oscillations
 - High-power could exceed thermal rating \rightarrow catastrophic failures
- Feedback network to improve low frequency stability

Source match

- GaN HEMTs ➔ low input impedance
 - Trade-off between gain, stability, and bandwidth

\[Z_0 = 10 \, \Omega \]
Load tuning

- Load-pull with no harmonic control
 - $P_{out} \sim 50 \text{ dBm}$
 - PAE $> 50\%$
 - Harmonic levels $\sim 30 \text{ dBm} (\sim 20 \text{ dBC})$

$F_0 = 1.25 \text{ GHz}$
$Z_0 = 50 \Omega$
Harmonic tuning

- swept harmonic at $\Gamma = 0.8$ over all phase angles
 - optimal harmonic impedances will be reflective
 - harmonic levels reduced to below 30 dBC
 - PAE improved to over 70 %
Proposed HPA Topology

- Transitioned to new GaN HEMT vendor
- Two-stage HPA design
 - 8-10 W GaN HEMT 1st stage
 - 120 W GaN HEMT 2nd stage
 - Input, interstage, and output matching networks on TMM 6
 - 10 Ω interstage matching
- Separate DC bias / control board
 - drain switching
 - gate dropout protection
8W to 100W interstage match

\[Z_0 = 10 \, \Omega \]
100 W Output match

$Z_0 = 50 \, \Omega$

New part has slightly lower PAE
Thermal Design

Radiator Sizing for TRM

Estimated Power Dissipation = 22W

Total radiator Area = 65,381 sq mm
Conclusions

- **SweepSAR requires high peak power, high-efficiency HPA**
 - GaN HEMT technology
 - Active Load-pull system for high-efficiency design
- **Complexities of Load-pulling high power part**
 - Test fixture design
 - Stability enhancement techniques
- **Load-pull results on 100 W GaN HEMT**
 - ~50 dBm output power
 - ~70 % PAE
 - Harmonic levels improved to below 30 dBc with harmonic tuning
- **Rev 1 HPA measured results**
 - ~50 dBm Pout
 - ~60 % PAE
 - 30 dBc harmonic levels