Extending the X/Ka Celestial Reference Frame to the South Polar Cap: Results from combined NASA-ESA baselines to Malargüe, Argentina

Christopher S. Jacobs

Jet Propulsion Laboratory, California Institute of Technology

7 March 2013
Overview

• How do astrometric sources change with wavelength? Why Ka-band?

• X/Ka in the context of other Celestial Frames: S/X, K, Q

• Prospects for Improvements:
 SNR, Instrumentation, Troposphere

• Southern Geometry:
 • Our plan to reduce the largest error is a NASA collaboration with ESA’s X/Ka 35-m in Malargüe, Argentina
 • First fringes Malargüe to Australia, California, Spain
 • South Polar Cap first results: 95 sources detected! 2/3 non-ICRF2

• Optical frames: tying to ESA’s Gaia mission at 10 μas level
• **Sensitivity worsens** at shorter wavelength/high frequency
 Higher system temperature: atmosphere H$_2$O (22 GHz), O$_2$ (60 GHz)
 Antenna pointing more difficult
 Antenna surface shape control more difficult
 Atmospheric absorption
 Resolved sources

• **Quasar astrophysics gets better for astrometry**
 Sources more compact at shorter wavelength (higher frequency)
 More sources resolved at higher frequency--> less sources
 Less extended structure: plume is steep spectrum
 Core shift reduced at short wavelength/high frequency
Source Structure vs. Wavelength

S-band
2.3 GHz
13.6 cm

X-band
8.6 GHz
3.6 cm

K-band
24 GHz
1.2 cm

Q-band
43 GHz
0.7 cm

The sources become better

Ka-band
32 GHz
0.9 cm

Images credit: P. Charlot et al, AJ, 139, 5, 2010
CRF Context for X/Ka

S/X ICRF2: 3.6cm, 8 GHz (Ma et al, IERS, 2009)

K-band: 1.2cm, 24 GHz (Lanyi et al, AJ, 2010)
 (Charlot et al, AJ, 2010)

X/Ka-band: 9mm, 32 GHz (Jacobs et al, ISSFD, 2012)
ICRF2 S/X: 8.4 GHz, 3.6cm: 3414 sources

40 μas floor. ~1200 obj. well observed, ~2000 survey session only

Credit: Ma et al, eds.: Fey, Gordon, Jacobs, IERS Tech. Note 35, Germany, 2009
VLBA all northern, poor below Dec. -30°. ΔDec vs. Dec tilt= 500 μas

Cal. to Madrid, Cal. to Australia. **Weakens southward. No ΔDec tilt**
X/Ka sources (blue) which are surrounded by Red squares are also in the Fermi 2FGL gamma-ray point source catalog. Over 1/3 of X/Ka sources (~175) have gamma-ray detections.
• **SNR**: low cost disk drives \(\rightarrow\) more bits!

• **Instrumentation**:
 - Digital Back Ends: Baseband Conversion, Filters
 - Phase calibration for X/Ka-band
 Ruszczyk et al, IVS, 2012; Tuccari, IVS, 2012
 García-Miró et al, IVS, 2012
 Hamell, Tucker, Calhoun, 2003

• **Troposphere cals:**
 - JPL Advanced WVR: 1 mm accuracy
 Tanner et al, R.Sci, 2003;
 Bar-Sever et al, IEEE, 2007

• **Southern Geometry**
 Collaborate with ESA’s X/Ka station in Malargüe, Argentina
50 sessions, No Sim. Southern Data Adding Simulated data

Credit: Bourda, Charlot, Jacobs, ELSA Conf., 2010

- 50 real X/Ka sessions augmented by simulated data
 simulate 1000 group delays, SNR = 50
 ~9000 km baseline: Australia to Argentina

- Completes Declination coverage: cap region -45 to -90 deg
 144 south polar candidate sources (*Sotuela et al, Porto, 2011*)
 200 µas (1 nrad) precision in south polar cap,
 mid south 200-1000 µas, all with just a few days observing.

Declination Sigma
Orange: < 100 µas
Red: < 200
Green: < 300
Blue: < 500
Purple: < 1000
White: > 1000

7 Mar 2013, C.S. Jacobs
Malargüe: The Next X/Ka VLBI Station

X/Ka: ESA Deep Space Antenna DSA 03

- **Malargüe, Argentina**
- Fall-2012 NASA/ESA collaboration
- 35-m, X/Ka-band, 9,500 km baseline
 Argentina-Australia covers south polar cap
 Full sky coverage for X/Ka!!
- Argentina-California & Australia-California orthogonal baselines for mid-latitudes
- High (1.5km), dry desert site: good for Ka-band
- HA-Dec coverage: Tidbinbilla to Malargüe:

Malargüe, Argentina 35-meter as of 26 Sept. 2012
Photo credit: European Space Agency
http://www.esa.int/Our_ACTIVITIES/Operations/Malarguee_-_DSA_3

ESA Deep Space Antenna
X/Ka-band capable
Malargüe: The Next X/Ka VLBI Station

Malargüe, Argentina

ESA’s DSA 03 35-meter

Dec 2012

Photos credit: Leslie A. White
Malargüe: The Next X/Ka VLBI Station

Malargüe, Argentina

ESA’s DSA 03 35-meter

Dec 2012

Photos credit: Leslie A. White

07 Mar 2013 C.S. Jacobs
ESA’s Argentina 35-meter antenna adds 3 baselines to DSN’s 2 baselines

- Full sky coverage by accessing south polar cap
- near perpendicular mid-latitude baselines: CA to Aust./Argentina
1st Ka fringes NASA to ESA-Malargüe
60 sec integrations, 256 Mbps (16 channels, 4 MHz, I/Q, @2bit)

ESA’s Argentina 35-meter antenna adds 3 baselines to DSN’s 2 baselines
• Full sky coverage by accessing south polar cap
• near perpendicular mid-latitude baselines: CA to Aust./Argentina

Maps credit: Google maps
Goldstone, CA to Madrid & Australia + Malargüe to Australia.
95 in south cap (dec<-45); 19 ICRF2 Defining; 2/3 of cap non-ICRF2
Goldstone, CA to Madrid, Australia. **Weakens southward, no south Cap**

Credit: Jacobs et al, ISSFD, Pasadena, 2012
Goldstone, CA to Madrid & Australia + Malargüe to Australia.
Gaia/VLBI frame tie & Accuracy test

Gaia: 10^9 stars
- 500,000 quasars V< 20 mag
 20,000 quasars V< 18 mag
- radio loud 30-300+ mJy
 and optically bright: V<18 mag
 ~2000 quasars
(Mignard, IAU, Beijing, 2012)

- Quasar Precision
 70 μas @ V=18
 25 μas @ V=16

Figure credit: http://www.esa.int/esaSC/120377_index_1_m.html#subhead7

S/X frame tie Strategy:
Bring new optically bright quasars into the radio frame
(Bourda, EVN, Bordeaux, 2012)

X/Ka frame tie:
Measured X/Ka precision and simulated Gaia optical precision
yields frame tie alignment of ~ 10 μas per 3-D rotation angle
Limited by Xka precision, but improving as more data arrives.

XKa: 146 optically bright counterparts: V< 18 mag

(optical V magnitudes: Veron-Cetty & Veron, 2010)
Conclusions

• Increasing frequency -> lower sensitivity, but more compact

• Celestial Frame Overview:
 - S/X ICRF-2 ~70 μas 3414 sources
 - K-band ~100 μas 268 sources
 - X/Ka-band ~250 μas 577 sources

• Future Improvements:
 - SNR (2Gbps), Instrumentation: DBEs, PCGs, Trop.: WVRs

• ESA-NASA collaboration: add Malargüe, Argentina 35-meter
 - Improves net from 2 to 5 baselines, orthogonal mid-lat baselines
 - Full sky coverage by accessing south polar cap!
 - 95 in south polar cap (dec<-45). Cap sources 2/3 non-ICRF2
 - 19 ICRF2 Defining in south polar cap

• Frame tie: XKa VLBI/Gaia optical tie precision ~10 μas.
BACKUP SLIDES
Instrumental Stability: Allan St. Dev.

- Spain: Cebreros-DSS 55
 Ka-band, 10km baseline, 2000 sec of data

- Time Scale 60 - 1200 sec
 Slope = -0.69
 consistent with 2-D
 Kolmogorov frozen flow
trop noise (slope = -2/3)
(Treuhaft & Lanyi, R.Science, 1987)

- Time scale 1-20 sec: Slope = -0.84
 shows some sign of white noise
 limitation (slope ~ -1)

- Time scale 20-60 sec: Slope = -0.18
 3-D trop turbulence noise (-1/6)
 from small scale fluctuations?
 thermal drift of instrument?

Validated ESA-DSN baseline & interfaces (Jacobs et al, EVN, Bordeaux, 2012)
South polar cap: two sessions (3 hr + 8 hr)
Some parts of Declination -45 to -60 not yet observed
RA-Dec correlation for 577 XKa sources

Note systematic trend in correlation vs. declination
ICRF2 type for 577 XKa sources

Note 19 ICRF2-Defining sources in South polar cap: Declination -45 to -90 deg
Optical redshift, \(z \).
Very distant \((z > 2)\) sources may be of value in cosmological studies.
Optical magnitude for 577 XKa sources

Optical Visual magnitude, V.
Gaia satellite will detect $V < 20$ and $V < 18$ is “bright” for Gaia.
The Potential for a

Ka-band Worldwide VLBI Network

Journees, Vienna, 2011. C. S. Jacobs¹,

U. Bach⁶, F. Colomer⁷, C. Garcia-Miro², J. Gomez-Gonzalez⁷, S. Gulyaev⁹, S. Horiuchi³, R. Ichikawa¹², A. Kraus⁶,
G. Kronschnabl⁵, J.A. Lopez-Fernandez⁷, J. Lovell⁸, W. Majid¹, T. Natusch⁹, A. Neidhardt⁴, C. Phillips¹³, R. Porcas⁶,
A. Romero-Wolf¹, L. Saldana¹⁴, U. Schreiber⁵, I. Sotuela², H. Takeuchi¹¹, J. Trinh¹, A. Tzioumis¹³, P. de Vicente⁷, V. Zhavor⁷⁰

(1) Jet Propulsion Laboratory, California Institute of Technology/NASA (2) Madrid Deep Space Communications Complex/NASA, INSA, Spain (3) Canberra Deep Space Communications Complex/NASA, C.S.I.R.O., Australia
(4) Technische Universitaet Muenchen, Germany (5) Bundesamt fuer Kartographie und Geodaesie, Bad Koeetzing, Germany (6) Max-Planck-Institut fuer Radioastronomie, Bonn, Germany (7) Instituto Geografico Nacional, Madrid, Spain
(8) University of Tasmania, Hobart, Australia (9) Institute for Radio Astronomy and Space Research, Auckland University of Technology, New Zealand (10) Sternberg State Astronomical Institute, Moscow, Russia
(11) ISAS/JAXA, Sagamihara, Japan (12) Kashima Space Research Center, NICT, Kashima, Japan (13) CSIRO Astronomy and Space Science, Australia (14) ITT Mission Systems, Monrovia, CA