Interplanetary CubeSat
Architecture and Missions

LunarCubes #2 (2013)
2013 April 11

Joseph Lazio, Robert L. Staehle, Andrew Klesh, Andrew Romero-Wolf, Diana Blaney, Hamid
Hemmati, Dayton Jones, Paulett Liewer, Martin Wen-Yu Lo, Pantazis Mouroulis, Neil
Murphy, Paula J. Pingree, Thor Wilson, Chen-Wan Yen

Jet Propulsion Laboratory, California Institute of Technology

Jordi Puig-Suari, Austin Williams
California Polytechnic University, San Luis Obispo

Tomas Svitek
Stellar Exploration

Bruce Betts, Louis Friedman
The Planetary Society

Brian Anderson, Channing Chow
University of Southern California

© 2013 California Institute of Technology. All rights reserved.



Example Missions

e

. Mineral Mapping of AStél’OidS-[SmallfB_o'dy‘Science] :

= /
. Solar System Escape [Tech Demo] -~/

5

\-'..IlfL .‘a

l Hyieg
. Earth-Sun System [Space- and Hehophys:cs]
e.g., Sub-L1 Space Weather Momtor =

5

. Phobos Sample Return [SOIar’s.ys?em Science]
i =

. Earth-Moon Radio-Quiet ObsérV'aEOry [Ast@hysics T

Out-of-Ecliptic [Space Physics, Heliophysics]




6. Maximizing
downlink info content

Six Technology Challenges

Taxonomy
* Mass <~ 10 kg
* Cost<S30 M
* Durations up to 5 years

* Target volume is 6U (10 x 20 x
30cm
— 2U = payload, mission specific

— 2U = propulsion, e.g., solar sail (if
needed)

— 1U = two-way (optical) telecomm

— 1U = spacecraft housekeeping

=y 1. Interplanetary
environment

2. Telecommunications

3. Propulsion
(where needed)

4. Navigation
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1. Interplanetary environment

Select based on LEO experience
Multiple computers

Asymmetric redundant data paths
Watchdog timers

CubeSat at LEO
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2. Telecommunications

Expected Lasercomm Data Rate
Improvements afforded by larger
ground telescope diameters, greater
laser power on CubeSat, and higher

quantum efficiency ground detectors.

Butlll
.* RF can deliver 10 b/s
A 7 .
20 e out to 0.2 au using
R Universal Software
15 g Radio Peripheral

(USRP) and 34 meter
dish. Onboard HGA
can yield higher rate.
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Earth Escape 5.6m Solar Sail, 3.5 Yr

< 107 Solar Sail Trajectory from GEO, p=0.01,1=0.85 €2,=0 deg. transfer time=3.5 years.
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Interplanetary Superhighway Trajectory 4. Navigation
Technology Roadmap '
Earth-Moon Example (Doedel et al.) ' '
Orbit Families Around L1, L2, L3, L4, L5

« Currently Only Halo Orbit Families Are Used
Only around Earth-Moon L1 and L2

« Many Identified Families Yet To Be Used
« Many Other Families Yet To Be Identified & Mapped
« Families for Other Planets and Moons To Be Mapped

Martin Lo, 2012 March



6. Maximizing downlink

information content

CubeSat Onboard processing
Validation Experiment (COVE)*
« Funded by NASA Earth Science
Technology Office (ESTO)
ART ] « JPL payload aboard University of
e R Michigan’s M3 CubeSat
o « Launched 2011 Oct 28 with NPP

« Intended to demonstrate Xilinx V5QV FPGA with an algorithm to

reduce output data rate from MSPI’s 9 multi-angle cameras by more
than 200x.

? Executed unintentional first autonomous docking with Montana
State’s E1P CubeSat?

« Funded for re-build/re-flight.

* Dmitriy L. Bekker, Paula J. Pingree, Thomas A. Werne, Thor O. Wilson, Brian R. Franklin, The COVE Payload - A
Reconfigurable FPGA-Based Processor for CubeSats, USU SmallSat Conf, Logan, UT 2012 August.



NSPIRI

Interplanetary NanoSpacecraft Pathfinder In a Relevant Environment
Low-cost mission leadership with the world’s first CubeSat beyond Earth-orbit
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INSPIRE Fact Sheet

Enabling a new class of interplanetary explorer, while providing
components to reduce the size and cost of traditional missions

Mission Objectives

+ Demonstrate and characterize key nano-spacecraft telecommunications, navigation,
command & data handling, and relay communications for mother-daughter

* Demonstrate science utility with compact science payload
1/2U Helium Magnetometer and combination Star-Tracker/Imager

» Demonstrate ability to monitor and power cycle COTS/university processing systems

Mission Concept

« JPL-built spacecraft; collaborative partnerships with Michigan, Texas, and CalPoly/Tyvak for COTS
processing systems. Ground stations at U. Michigan and Goldstone with DSN compatibility

« C&DH monitor hosted payloads — autonomously resetting components in event of upset
+ Spacecraft demo relay communications from other spacecraft back to ground stations

Pre-Decisional--For Planning and Discussion Purposes Only




Overview:

Volume: 3U
(10x10x30cm)

Mass: 3.8 kg
Power Generation:
17 W

Data Rate:
100-1200 bps

Operations:
DSN, Peach

Mountain (U.
Michigan) & DSS-13
(JPL)

S/C components will
provide the basis
for future high-
capability, lower-
cost-risk missions
beyond Earth
expanding and
enabling NASA
capabilities in an
emergent domain.

INSPIRE — world'’s first deep-space CubeSats
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Sword: UHECR Pulse Detection From Space

Deployable antenna array
Orbit altitude: 800 km
Horizon: 3000 km away
Visible area: 117 x 10 km?
Band: 30-300 MHz

Radio pulses expected to be

stronger at lower frequencies
30MHz cutoff is where a8
ionosphere effects begin to ol /

dominate.

High band costs more in data
rate and signal is weaker above
300 MHz.
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Dark Ages Radio Explorer

DARE's Key Mission Design Features:

« Weak Stability Boundary (WSB) trajectory - requires less AV
for LOI and allows a flexible launch date

* Equatorial, 200km mean orbit altitude - long-period stability
* Low inclination orbit - maximizes Earth occultation

» Launch May 2016 - allows science ops by Dec. 2016

* Baseline Mission 3 years

*Threshold Mission 1 year

CM-1 5 minutes
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Workable Interplanetary CubeSat System
Architecture emerges from the maturation of
six key technologies l

(a)

LightSail 1'™: Planetary Society, Stellar Exploration,
CalPoly-SLO

RAX-2: University of Michigan





