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Introduction 
• Objective:  Survey the radio sky for short (<1 s) transient pulses. 
• Requires a sensitive, wide-field-of-view telescope 

– Targeting ASKAP with phased array feeds 
– 36x 12m dishes, each with up to 36 beams, 30 deg2 FoV at 0.7-1.8 GHz 

• Requires removal of interstellar dispersion for many trial dispersion 
measures. 

• Performance achieved in our implementation 
– Real-time incoherent de-dispersion for 442 DMs and 36 beams 
– Real-time automatic transient detection by examining all 14,400 de-

dispersed time series 
– Integrating time (time resolution) < 1 ms 
– Detection latency < 35 ms (allows capture of raw voltage samples near 

each tentative detection for off-line analysis) 
– To our knowledge, this is the highest-performance transient search 

engine implemented to date. 
• Context 

– CRAFT collaboration's proposal for a commensal transient survey was 
one of 10 science programs selected for ASKAP. 

– SKA:  Our investigation of automated systems for detecting fast 
transients should inform design of SKA's high-time-resolution features. 
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Design Considerations 
• ASKAP will have 

– up to 36 dual-polarization beams per antenna, producing ~30 deg2 FoV 
– 304 MHz instantaneous bandwidth in the range 700-1800 MHz; 1 MHz channels. 

• Antenna combining options 
– Full cross correlation and imaging each beam's FoV:   too slow.  ASKAP 

correlator's minimum integration time is 5 s. 
– Coherent beamforming – form multiple array beams from each set of 

corresponding antenna beams:  high sensitivity and fine time resolution, but 
small total FoV since only a few narrow array beams can be formed. 

– Incoherent combining – sum power spectra across antennas:  N/sqrt(N) = 6 
times less sensitivity than coherent beamforming, but preserves entire FoV.  For 
ASKAP, this provides the highest survey speed. 

• De-dispersion 
– Incoherent de-dispersion is the only option 
– To cover DM = 10 to 3000 pc/cm3 near 1 GHz, ~400 DMs must be searched 

• Raw sample buffer capture:  preserve voltage samples near tentative 
detection events to allow more detailed analysis 

– Requires real-time event recognition and short latency 
• Time resolution:  desire best possible; < 1 ms achieved. 

11 January 2013 National Radio Science Meeting, USNC-URSI, Boulder, CO 3 



CRAFT Back-End Implementation (Tardis-ASKAP) 
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Hardware 

• COTS PCIe card with plug in FPGA modules 
– Pico Computing EX-500 backplane and up to 6 M-501 FPGA modules. 
– Each module has one Virtex-6 LX240T-2 and 512 MB DDR3 memory. 
– One FPGA module for cross-antenna summing, four for de-dispersion. 
– Backplane has x16 Gen2 PCIe to host, 8GB/s bandwidth 

• Data from beamformers received over dual 10GbE transceivers. 
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EX-500 backplane with two M-501 FPGA modules installed. 

• Also Considered: 
– Casper Roach Board 
– ASKAP Redback Board.  

 



Single-Dish Version (Tardis-SD) 
• Large parts of the CRAFT back end were complete and had passed 

laboratory tests in late 2011 (including the de-dispersion engines). 
• In early 2012 it became clear that delays in the ASKAP project and a 

decision to re-design its electronics to take advantage of technology 
advancements would not allow it to accommodate the CRAFT back end for 
several years. 

• We therefore decided to create a second version, suitable for single-dish 
telescopes, that could be deployed sooner.  A 34m antenna at the 
Goldstone DSN complex ("DSS13") is the primary target. 

• Each DD FPGA's processing capacity was re-allocated to obtain finer time 
resolution: 

– ASKAP:         304 channels,1.0 ms integrations, 442 DMs, 9 beams/FPGA 
– Single Dish:   1024 channels, 0.1 ms integrations, 512 DMs, 1 beam/FPGA 

• One Pico EX-500 motherboard can accept up to 6 FPGA boards, so we can 
process 6 beams, which are now independent of each other. 

• DSS13 provides a dual-band receiver:  2.2-2.3 GHz and 8.2-8.6 GHz.  Both 
bands can be observed simultaneously. 

• We implemented two 1024-channel spectrometers in one ROACH1 board to 
support the back end. 
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DSS13 Deployment Block Diagram 
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Transient Detection Algorithm 
• A tentative detection is recorded for DM d whenever a threshold is 

exceeded by the current sample of the de-dispersed time series: 
 xd  >  μd + s σd 

where μd  is the running mean and σd  is the running standard deviation of 
that DM's de-dispersed time series; and s is a user-settable parameter. 

• The mean and standard deviation are computed automatically using IIR 
filters, separately for each DM: 

 
 
 

 
where M and S are user-settable time constants, in samples.  (M, S, and s 
are constant across all DMs.) 

• Detection decisions are made as each group of de-dispersed samples is 
computed (16 samples/group in the ASKAP version and 64 in the single-
dish version).  A detection is flagged if any of the samples in that group 
exceeds the threshold. 
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Test Results from Goldstone 34m (1 of 2) 
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Pulsar J0332+5434, 2.2-2.3 GHz, 0.1 ms integrations, DM search range 1-500 pc/cm3. 
947s observation, 148,320 groups, 118 groups had TDs.  Period=0.7145 s => 1325 pulses (9%). 
Measured DM = 27.03±0.9 pc/cm3; published DM = 26.83 pc/cm3. 

Each dot is a tentative detection 
 at the indicated DM, threshold 6σ. 
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Conclusions and Further Work 
• We have designed and implemented a radio telescope back end 

that detects transient pulses in real time after incoherent de-
dispersion at ~500 DMs and for multiple beams simultaneously. 

• Two versions so far:  one tailored to the ASKAP telescope (36 
beams) and one for single-dish telescopes (up to 6 beams). 

• Detection latencies ~30 ms or less are achieved, allowing capture of 
raw voltage samples around the detected pulse. 

• A new incoherent de-dispersion algorithm is used in order to 
maximize SNR over a wide range of DMs.  Distribution of trial DMs 
across the search range is also optimized. 

• Desirable further work: 
– Implement sample capture buffer in the ROACH spectrometer at DSS13 
– Implement software to discriminate against non-astrophysical tentative 

detections (RFI, noise) 
– Automate operation of the DSS13 installation 
– Possible deployment of Tardis-SD to other telescopes 
– Eventual deployment of Tardis-ASKAP to the ASKAP telescope 
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ASKAP Processing – Simplified View 
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Conceptual Block Diagram 
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Performance Summary 
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Sym. ASKAP SD
Maximum number of inputs (beams) b 36 6
DMs searched D 442 512
Integration time per spectrum, minimum τ 0.9 0.1 ms
Frequency channels per spectrum C 304 1024
Group size, integrations J 16 64
Transient detection latency (2 J τ  + 1ms) 33 14 ms

Tardis Back-End Specifications

ASKAP
RF band 700-1004 2200-2304 8200-8620 MHz

1500-1804 MHz
IF band 424-724 200-304 100-520 MHz
Effective sampling rate 910.22 325 1300 MHz
Channels 304 1024 1024
Useful channels 304 681 677
Channel width 1.00 0.159 0.635 MHz
Integration time 999.8 100.825 100.825 μs
Beams (all polarizations) 72 1 1

DSS13
Telescope Specifications
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