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Abstract—	
   Mars Science Laboratory (MSL) undergoes 
extreme heating and acceleration during Entry, Descent, and 
Landing (EDL) on Mars.  Unknown dynamics lead to large 
Doppler shifts, making communication challenging.  During 
EDL, a special form of Multiple Frequency Shift Keying 
(MFSK) communication is used for Direct-To-Earth (DTE) 
communication.  The X-band signal is received by the Deep 
Space Network (DSN) at the Canberra Deep Space 
Communication complex, then down-converted, digitized, and 
recorded by open-loop Radio Science Receivers (RSR), and 
decoded in real-time by the EDL Data Analysis (EDA) 
System.  The EDA uses lock states with configurable Fast 
Fourier Transforms to acquire and track the signal.  RSR 
configuration and channel allocation is shown.  Testing prior 
to EDL is discussed including software simulations, test bed 
runs with MSL flight hardware, and the in-flight end-to-end 
test.  EDA configuration parameters and signal dynamics 
during pre-entry, entry, and parachute deployment are 
analyzed.  RSR and EDA performance during MSL EDL is 
evaluated, including performance using a single 70-meter DSN 
antenna and an array of two 34-meter DSN antennas as a back 
up to the 70-meter antenna. 
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1. INTRODUCTION 

During Mars Science Laboratory (MSL)’s Entry, Descent, 
and Landing (EDL), there were two forms of real-time 
communication: Direct-to-Earth (DTE) and relay through 
Mars Odyssey orbiter. DTE communication was transmitted 
by MSL’s Small Deep Space Transponder (SDST) at X-
band frequencies and received at the Canberra Deep Space 
Communications Complex (CDSCC) in Australia. 
 

 
Figure 1- MSL EDL Direct-To-Earth Communications 

system diagram 

 
A DTE Communications system diagram is shown in Figure 
1.  Three antennas at CDSCC received the DTE signal: 
DSS-43 (70-m), DSS-34 (34-m), and DSS-45 (34-m), with 
DSS-43 being prime.  Both Right Circular Polarization 
(RCP) and Left Circular Polarization (LCP) signals were 
received and down-converted to Intermediate Frequency 
(IF) and recorded from DSS-43, as well as RCP signals 
from DSS-34 and DSS-45.  MSL’s transmitted signal was 
RCP.  The signals from DSS-34 and DSS-45 were also 
correlated and combined by the Full Spectrum Processor 
Array (FSPA) and recorded as a back up to DSS-43. 
 
Analog data from the antennas were distributed to closed-
loop Downlink Telemetry, and Tracking (DTT) receivers, 
the FSPA, and open-loop Radio Science Receivers (RSR).  
During EDL, traditional phase modulated low rate telemetry 
is not possible due to high dynamics and low signal-to-noise 
ratio.  The closed-loop DTT receivers received the signal on 
a best-efforts basis but as expected, did not stay locked 
through banking and parachute deployment.  The open-loop 
RSRs were prime for EDL.  The RSRs digitized, filtered, 
and down-converted the signal, using a 100 kHz 8-bit 
complex channel.  This data was relayed to the Wideband 
VLBI Science Receiver (WVSR) and transferred across the 
flight operations network from CDSCC in Australia to the 
EDL Data Analysis (EDA) assemblies at JPL’s Deep Space 
Operations Complex (DSOC). 
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Nf be the total number of bins to be searched.  The 
probability of correct detection is given by: 

                            !! ! !! ! !!!!!"!!!!
!!!                     (7) 

       
The expression above is the probability that each noise bin 
has a value lower than that of the signal bin.  We provide 
both the PDF of the signal bin and the CDF of the noise bins 
next.  These are defined in terms of several other terms 
listed below: 
 

1. !!!": Number of points per FFT.  This is the 
number of frequency bins over which we must 
search for the residual carrier. 

2. ∆!: Frequency resolution.  This is the sampling 
rate (100 kHz in this case) divided by !!!".  The 
result is the frequency resolution of the FFT. 

3. !:The  time  of  incoherent  integration. 
4. !"#  !"   !!

!!
: This is the carrier power to noise 

spectral density ratio for the residual carrier. 
5. !!"#$

!!
: This is the tone power (first harmonic only) 

to noise spectral density ratio. 
6. !!

!!
: This is the total signal power to noise spectral 

density ratio. 

For carrier detection, define: 

! = !∆! 
!! ! = !!!! 4 ∙ ! ∙ ! ∙ !"# !! !!!∙!"# !

!∙!"#
        

!!!
!         (8)                     

                                                                            !! ! = 1 − ! !,!
! !

                            (9) 
Here, Γ ! is the Euler gamma function and Γ !, !  is the 
incomplete gamma function [1].  Hence, the probability of 
correct detection for the residual carrier, which is one minus 
the probability of error is: 

! =
!!!! 4 ∙ ! ∙ ! ∙ !"# !! !!!∙!"# !

!∙!"#

!!!
!

1 − ! !,!
! !

!!!!
!"

!!!!
!!!               (10) 

 

The key input parameters are T, ∆!, !!, and CNR. 

For the probability of correct detection in resolving tones, 
assuming we have already correctly detected the carrier: 

1. !!: This is now the number of tones and not the 
number of frequency and frequency rate bins as it 
had been in the residual carrier case. 

2. Replace CNR by !!"#$
!!

 

3. Define ! = 2!∆!. 

The resulting expression for the probability of correct tone 
detection is: 

! =
!!!! 4 ∙ ! ∙ ! ∙ !!"#$

!!
!! !!!∙!!"#$

!!
!

!∙!!"#$
!!

!!!
!

1 − ! !,!
! !

!!!!
!"

!!!!
!!! (11) 

 

MSL EDL 

Significant events for the nominal parachute deploy case are 
shown in Table 1.  The 6DOF data was converted from 
Doppler frequency to sky frequency by adding MSL’s 
downlink transmitted frequency (TFREQ) of 
8,401,420,188.00 Hz and then a frequency offset of 9 KHz.  
The 6DOF data was originally in Spacecraft time (SCET), 
so one-way light time (OWLT) was added to obtain Earth 
Received Time (ERT). 

Table 1- MSL EDL Critical Events 6DOF nominal 
parachute chute deploy case 

 
Residual frequency, frequency rate, and frequency 
acceleration were computed and the late chute case is shown 
in Figure 7, Figure 8, and Figure 9 respectively.  Residual 
frequency changes slowly until Entry.  As the spacecraft 
accelerates towards Mars, it banks three times.  During 
banking, residual frequency rates reach +/- 300 Hz/s and 
residual frequency accelerations exceed +/- 100 Hz/s2.  
After banking is complete, residual frequency changes 
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Table 2- Key EDA simulation parameters 

Parameter 
Definition 

Parameter Name Value 

Length of 
simulation 

LENGTH 15 minutes, 5 
seconds 

Sampling rate SAMPLE_RATE 100 kHz 

Modulation index 
(∆) 

MOD_INDEX 43° 

Number of tones TON_NUMBER 256 

Frequency offset 
where tones begin 

TON_OFFSET 2000 Hz 

Frequency delta 
between tones 

TON_DELTA 70.5883 Hz 

Tone duration TONE_DWELL 10 seconds 

 

For the EDA software simulations, Radio Science Receiver 
data files were generated including a signal with the 
parameters specified in Table 2.  The simulation time 
ranged from E-540 seconds (when the 6DOF data started) to 
E+365 seconds (52 seconds after expected occultation).  
The frequency residual data from the 6DOF late chute data 
shown in Figure 7 was used.  10-second duration tones were 
also added.  The EDA software calculates the subcarrier 
frequency of tone number n as shown below in Equation 1.  
For MSL, the EDA software calculates the subcarrier 
frequency of tone number n using a spacing of 70.5883 Hz 
between tones as shown in Equation 2.  However, the MSL 
SDST uses Data Numbers (DNs) that must be integer 
numbers to specify sub-carrier frequency values. The actual 
tone spacing implemented by MSL varied between 66 DN = 
70.81 Hz and 65 DN = 69.74 Hz.  Actual tone spacing 
varied less than 1 Hz from the tone spacing used by the 
EDA software.  The EDA was configured to allow for this 
difference. 
 
            ftone =  TON_OFFSET + n*TON_DELTA       (12) 
 
                       ftone = 2000 + n*70.5883 Hz                  (13) 
 
Total power to noise ratio (Pt/No) is a configurable 
parameter and was varied from 30 dB-Hz down to 20 dB-Hz 
for different test runs. 
 
EDA Configuration 

The EDA utilizes a configuration file that specifies 
parameters to use for processing.  An activity such as MSL 
EDL can be broken up into different configuration segments 
with start/stop times.  Each configuration segment may 
utilize different signal processing parameters.  The 

configuration segments used in MSL EDL are shown in 
Table 3.  In 6DOF simulations, the earliest time that 
parachute deployment occurred was at E+231 seconds; the 
parachute configuration segment started 10 seconds before 
this time for additional margin. 

Table 3- MSL EDA Configuration Segments 

Segment Start time End time 
Pre-Entry E-540 E-100 

Entry E-99 E+220 
Parachute E+221 E+365 

 

Let !!"#  be the maximum residual frequency rate and 
!!"#  be the maximum residual frequency acceleration. 

A rule of thumb for FFT resolution is that the maximum 
frequency change during the interval in which the FFT is 
computed < Δf/4 [3].  

                                                                                    Δ! >    4  !!"#                            (14) 

Using !!"# of 400 Hz/s from Figure 8 yields Δf > 40 Hz.  
Based on this calculation, an FFT resolution of 40 Hz was 
chosen for the parachute configuration segment. 

A rule of thumb for time of incoherent integration is that it 
be sufficiently short that the maximum deviation of the 
received carrier frequency from a linear trajectory over the 
T-length segment is < Δf/4 [3]. 

                                                                                        ! <    2   !!
!!"#

                             (15) 

Using Δf = 40 Hz and !!"#  !" 150 Hz/s/s from Figure 9 
yields T < 0.73 seconds.  The minimum time of incoherent 
integration for the EDA is 1 second, so the system was 
configured with a value of T = 1 second.  This decision 
implied that some tones would be missed during periods of 
very high dynamics, such parachute deployment. 

Key EDA configuration parameters for the pre-entry, entry, 
and parachute EDA configuration segments are shown in 
Table 4, Table 5, and Table 6 respectively. 
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Table 4- Key EDA configuration parameters for Pre-Entry 
segment 

Parameter Acquisition 
State 

Tracking State 

FFT resolution 
(Δf) 

2 Hz 2 Hz 

Number of 
samples/FFT 
(NFFT) 

50,000 50,000 

Time of coherent 
integration (τ) 

0.5 seconds 0.5 seconds 

Time of 
incoherent 
integration (T) 

1 second 1 second 

Number of 
averaged FFTs 
(M) 

2 2 

Carrier 
frequencies to 
search 

Entire 100 kHz 
channel 

+/- 100 Hz 

Subcarrier 
frequencies to 
search 

+/- 2 Hz +/- 2 Hz 

Pre-FFT 
frequency rate 
search 

+/- 35 Hz/s +/-14 Hz/s 

Number of Pre-
FFT frequency 
rate bins (Nr) 

15 15 

Post-FFT 
frequency rate 
search 

+/- 2 Hz/s +/- 1 Hz/s 

Threshold SNR 15.5 dB 14.5 dB 

Search space (Nf) 750,000 750,000 

 

Table 5- Key EDA configuration parameters for Entry 
segment 

Parameter Acquisition 
State 

Tracking 
State 1 

Tracking 
State 2 

FFT 
resolution 
(Δf) 

10 Hz 5 Hz 5 Hz 

Number of 
samples/FFT 
(NFFT) 

10,000 20,000 20,000 

Time of 
coherent 
integration 
(τ) 

0.1 seconds 0.2 seconds 0.2 seconds 

Time of 
incoherent 
integration 
(T) 

1 second 1 second 1 second 

Number of 
averaged 
FFTs (M) 

10 5 5 

Carrier 
frequencies 
to search 

Entire 100 
kHz 
channel 

+/- 200 Hz +/- 200 Hz 

Subcarrier 
frequencies 
to search 

+/- 10 Hz +/- 5 Hz +/- 5 Hz 

Pre-FFT 
frequency 
rate search 

+/- 1400 
Hz/s 

+/-35 Hz/s +/- 21 Hz/s 

Number of 
Pre-FFT 
frequency 
rate bins (Nr) 

15 15 15 

Post-FFT 
frequency 
rate search 

+/- 100 
Hz/s 

+/- 4 Hz/s +/- 2 Hz/s 

Threshold 
SNR 

14.0 dB 13.5 dB 12.5 dB 

Measure and 
feedback 
accelerations 
to tracking 
loop 

off off on 

Search space 
(Nf) 

150,000 300,000 300,000 
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Table 6- Key EDA configuration parameters for Parachute 
segment 

Parameter Acquisition State Tracking State 

FFT resolution 
(Δf) 

40 Hz 40 Hz 

Number of 
samples/FFT 
(NFFT) 

2,500 2,500 

Time of coherent 
integration (τ) 

0.025 seconds 0.025 seconds 

Time of 
incoherent 
integration (T) 

1 second 1 second 

Number of 
averaged FFTs 
(M) 

40 40 

Carrier 
frequencies to 
search 

Entire 100 kHz 
channel 

+/- 600 Hz 

Subcarrier 
frequencies to 
search 

+/- 10 Hz +/- 5 Hz 

Pre-FFT 
frequency rate 
search 

+/- 500 Hz/s +/-350 Hz/s 

Number of Pre-
FFT frequency 
rate bins (Nr) 

21 15 

Post-FFT 
frequency rate 
search 

+/- 140 Hz/s +/- 125 Hz/s 

Threshold SNR 10.0 dB 7.0 dB 

Search space (Nf) 52,500 37,500 

 

Theoretical probabilities of carrier and tone detection, P, 
were computed based on similar work for MER [7] and 
using the equations described in [1].  The parameters shown 
in Table 4, Table 5, and Table 6 were used. The probability 
of missed carrier acquisition (1-Paq) vs Pt/No is shown for 
the parachute segment tracking state in Figure 11.  For a 
desired probability of carrier acquisition of 99.9%, the 
threshold Pt/No is about 23 dB-Hz.  The probability of 
missed tone acquisition (1-Paq) vs Pt/No is shown for the 
parachute segment tracking state in Figure 11.  For a desired 

probability of carrier acquisition of 99.9%, the threshold 
Pt/No is about 21 dB-Hz. 

 

Figure 11- Probability of missed carrier acquisition for 
parachute segment acquisition state 

 
Figure 12- Probability of missed tone detection for 

parachute segment state 

Using the configuration parameters specified in Table 6 for 
the parachute segment state, tone detection is harder than 
carrier detection.  Predicted minimum Pt/No was 28 dB-Hz 
(as shown in Figure 10), so there were several dB of margin 
for both carrier acquisition/tracking and tone detection.  The 
parachute segment was the most challenging, due to two 
factors: a) higher dynamics, including a discontinuity in 
residual frequency during parachute deployment and b) 
lower predicted Pt/No due to swinging on the bridle and 
associated TLGA angles. 
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