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Mixed Strategy in Game Theory JPL
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« A player can be better off by making a decision stochastically

Payoff function Player 1

Head Tail
Player 2 Head 1, -1 -1, 1
Talil -1,1 1, -1

(Both players maximizes the payoff)

* If Player 1 chooses Head deterministically
* Player 2 chooses Tail; Player 1's payoff : -1

* If Player 1 chooses Tail deterministically
« Player 2 chooses Head; Player 1’s payoff : -1

* |f Player 1 chooses Head and Tail with 50% chances
* Player 1’s payoff : O



Three available control options

& Mixed Strategy in Optimal Control JPL

m Cost ]
u
Lo 40 |9
U, 30 1.0% . w
Us 10 1.5% 30 ‘
Problem: A
 Minimize expected cost U
e Risk < 1% L s M
Optimal control input: u, (f’ 0.5% 10% 15% Risk

= pure control strategy )

* Choose u; with 50%
* Choose u; with 50%

“

Expected cost: 25, Risk: 1.0%



Darts Lab

u: control strategy

» Control sequence for MPC ¢t

« Control policy for DP
Feasible control set U
w:. uncertain parameter

« With known prob.

distribution
Cost function: f(u,w)
Constraint: g(u,w) > 0

Chance-constrained optimal control

problem

min E[f (u, w)]

s.t. Pr[g(u, w) > 0]
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Problem Formulation JPL
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Optimal pure
control strategy

Optimal mixed
control strategy

>
1.0% Risk



@ Cost and Risk of Mixed Control StrategyJPL
Pure control strategy u,
« Expected cost: ¢; = E[f(uy,w)]
* Risk: r; == Pr[g(u,w) > 0] Cost
cq = Optimal pure
! control strategy

~
7

Pure control strategy u,
« Expected cost: ¢, == E[f(u,,w)] i
* Risk: 7, :=Pr[g(u;,w) > 0] p.c +p.cl-mmmn-- .

Mixed control strategy ] E— S I ) Uy

* Choose u, with probability p, :

« Choose u, wﬂh_ probability p, . 10% r Risk
» Expected cost :p;c; + p,c, pi1 + D2ty

* Risk:p;ry +p,1,



& Cost and Risk of Mixed Control StrategyJPL
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Theorem 1 Cost |

The set of the cost and risk
of all mixed control
strategies is the convex hull
of that of all pure control Optimal mixed
strategi es. control strategy

Optimal pure
control strategy

>
Remark 1.0% Risk

A mixed control strategy can
outperform pure control
strategies if the optimization
problem is nonconvex



Related Work JPL

 MDP typically considers mixed strategy

* In Optimization
— Vajda and Greenberg

— Mukherjee, 1980: Considered a special
case with two dicision variables

* No prior work in the domain of chance-
constrained optimal control



Theorem 2 %
Mixed-strategy CCOC %
problem does not have | &
a duality gap "
Theorem 3

The optimal mixed
control strategy
consists of up to two
pure control strategies

Strong Duality of Mixed Strategy CCOCIPL
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\ / Dual optimal solution of pure strategy CCOC
= Dual optimal solution of mixed strategy CCOC
A5, 1
\\(/4 ) Optimal solution of pure strategy CCOC




How to Compute an
Optimal Mixed Control Strategy? JPL

[ \ o N
Idea: 3
©
1. Solve the dual of pure §
strategy CCOC 2
2. Obtain u; and u, "
. T'Z—A . A—T'l
3' P1 = 7‘2—7‘1, P2 = roy—T1

4. Optimal mixed control
strategy: choose u,
with the probability of
p1, choose u, with the
probability of p,

. /
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Solving the Dual of CCOC  JpL
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Dual Problem

max {LIlElqul E[f(u,w)] + A(Pr[g(u,w) > 0] — A)
|

q(A)

Primal Problem

min E[f (u, w)]
s.t. Pr[g(u,w) > 0] < A



Dual Problem
max min E[f (u,w)] + A(Pr[g(u, w) > 0] — A)

A UuelU

|
q(A)

qg(1) is always concave

Optimality condition: 0 € dg(A)

- dq(A): subgradient

Prl[g(u,w) > 0] — A € dq(d)

Therefore, dual optimization is reduce to a zero-
finding problem over dq(A)
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Solving the Dual of CCOC  JpL

Dual Problem

max Lnel{tl E[f(u,w)] + A(Pr[g(u,w) > 0] — A)
|

q(4)
* For a given 4, solve the unconstrained

optimal control problem to find the optimal
control u*(A)

* Evaluate Pr[g(u*(1),w) > 0] — A
* If it is not zero, adjust A.



Dual Problem
max milrtl E[f(u,w)] + A(Pr[g(u,w) > 0] — A)

A  UE

q(A)
* |ntuition

- A Is a sensitivity to risk
— Smaller A: greater Pr[g(u*(1),w) > 0]
— Greater A : smaller Pr[g(u*(1),w) > 0]

* Dual optimization = find A that results in
exactly A of risk.




CCDP: Dual Reformulation JPL

Dual Problem

ma )

A

Too risk-taking
dq(4) ,/
J
Prig(u*(H),w) > 0] — A

/ Overly conservative

h)
> A
A*\L

0

| >~




CCDP: Problem Formulation JpL

Dual Problem

max q(4)

Too risk-taking

A
dq
a Al / / Overly conservative

A
M*l,\l\




CCDP: Problem Formulation JpL
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Dual Problem

max q(4)

Too risk-taking

A
dq
oA / / Overly conservative

AN > A

/<_ y



CCDP: Problem Formulation JpL

Dual Problem

max q(4)

Too risk-taking

dq 1
oA / Overly conservative
AL X

> A
N

0 A




CCDP: Problem Formulation JPL

Dual Problem

max q(4)

Interpretation: dual variable = penalty
Too risk-taking

dq N\
dr A \ / Overly conservative

| v S

> A
x*u\
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Optimal Mixed Control Strategy? JPL
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CCDP: Problem Formulation JpL

Dual Problem

ma )

U, =u*(4)

- A \ w = u* (i)
:
: ;ﬂli/

> A
A*‘J\
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Implementation JPL
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« Can be used with any chance-
constrained optimal control problem, as
long as its dual can be solved

* Implemented on chance-constrained

dynamic programming (CCDP)*

*Ono, Kuwata, Baralam, “Joint chance-constrained dynamic programming,” CDC-12

24
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Application to Path Planning JPL
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Problem:
* Minimize path length
* Risk < 2%

* Xk4+1 =xk+uk +Wk
» 100x100 discrete state space

SN Control | Expected

130.8

104.2

0.64
%

2.0%



Application to Mars Entry,
Descent, and Landing JPL
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%10 Expected drive distance = 6456155

~ Problem:
‘ « Minimize driving
| distance to visit two

-3.382;

-J.384

@)
- science targets after
= | landing
" -3 388 ) 1 cy
‘E‘ -3.3-35_ _ . %é&%og'dlscorete state space
2  Used terrain data at E.
s Margaritifer on Mars
-3 394:{2_’; N
3395 Control | Expecte
3356 § strategy | d cost
24 | Pure 64549 0.016
-3.7 -3.695 -3.69 -3.685 0
_ East (m) ¥ A)
wnedfomovsandboz = C EMAT rciar Analysisimatiab x10

Mixed 644.81 0.1%



Conclusions JPL

« Characterized a mixed-strategy chance-
constrained optimal control problem using the
MC/MC framework

— It is a convexification of a pure-strategy chance-
constrained optimal control problem

— Hence, there is no duality gap
* Developed an algorithm that obtains an optimal
mixed control strategy

— Build upon the dual solution to a pure-strategy
chance-constrained optimal control problem

 Demonstrated the proposed algorithm on path
planning and Mars EDL scenarios
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