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Mixed Strategy in Game Theory 

Payoff function Player 1 
Head Tail 

Player 2 Head 1, -1 -1, 1 
Tail -1, 1 1, -1 

2 

• A player can be better off by making a decision stochastically 

(Both players maximizes the payoff) 

• If Player 1 chooses Head deterministically 
• Player 2 chooses Tail; Player 1’s payoff : -1 

• If Player 1 chooses Tail deterministically 
• Player 2 chooses Head; Player 1’s payoff : -1 

• If Player 1 chooses Head and Tail with 50% chances 
• Player 1’s payoff : 0 
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Mixed Strategy in Optimal Control 

Control  Cost Risk 
𝑢1 40 0.5% 
𝑢2 30 1.0% 
𝑢3 10 1.5% 

3 

Three available control options 

Problem:  
• Minimize expected cost 
• Risk ≤ 1% 

 

Optimal control input:  𝑢2 
 
 

Optimal mixed control strategy: 
• Choose 𝑢1 with 50% 
• Choose 𝑢3 with 50% 

Risk 

Cost 

0.5% 

40 

30 

10 

1.0% 1.5% 

Expected cost: 25, Risk: 1.0% 

𝑢1 

𝑢2 

𝑢3 

= pure control strategy 
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4 

Risk 

Cost 

1.0% 

𝑢 ∈ 𝑈 
 

Optimal pure  
control strategy 

Optimal mixed  
control strategy 

𝑢1 
 

𝑢2 
 

• 𝑢: control strategy  
• Control sequence for MPC 
• Control policy for DP 

• Feasible control set 𝒰 
• 𝑤: uncertain parameter 

• With known prob. 
distribution 

• Cost function: 𝑓 𝑢, 𝑤  
• Constraint: 𝑔 𝑢, 𝑤 ≻ 0 

 
 
 

Chance-constrained optimal control 
problem 

 

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] 
s.t. Pr[𝑔 𝑢, 𝑤 ≻ 0] 

Problem Formulation 
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Risk 

Cost 

1.0% 

𝑢 ∈ 𝑈 
 

Optimal pure  
control strategy 

Optimal mixed  
control strategy 

𝑢2 
 

Pure control strategy 𝑢1  
• Expected cost : 𝑐1 ≔ 𝔼[𝑓 𝑢1, 𝑤 ] 
• Risk: 𝑟1 ≔ Pr[𝑔 𝑢1, 𝑤 ≻ 0] 
 
Pure control strategy 𝑢2  
• Expected cost : 𝑐2 ≔ 𝔼[𝑓 𝑢1, 𝑤 ] 
• Risk: 𝑟2 ≔ Pr[𝑔 𝑢1, 𝑤 ≻ 0] 

 
Mixed control strategy  
• Choose 𝑢1 with probability 𝑝1 
• Choose 𝑢2 with probability 𝑝2 
• Expected cost :𝑝1𝑐1 + 𝑝2𝑐2 
• Risk: 𝑝1𝑟1 + 𝑝2𝑟2 

 

𝑢1 
 

𝑟1 

𝑐1 

𝑐2 

𝑟2 

𝑝1𝑐1 + 𝑝2𝑐2 

𝑝1𝑟1 + 𝑝2𝑟2 

Cost and Risk of Mixed Control Strategy 
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Risk 

Cost 

1.0% 

𝑢 ∈ 𝑈 
 

Theorem 1 
 

The set of the cost and risk 
of all mixed control 
strategies is the convex hull 
of that of all pure control 
strategies. 

Remark 
 

A mixed control strategy can 
outperform pure control 
strategies if the optimization 
problem is nonconvex 

Optimal pure  
control strategy 

Optimal mixed  
control strategy 

Cost and Risk of Mixed Control Strategy 
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Related Work 

• MDP typically considers mixed strategy 
• In Optimization 

– Vajda and Greenberg 
– Mukherjee, 1980: Considered a special 

case with two dicision variables 
• No prior work in the domain of chance-

constrained optimal control 
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Strong Duality of Mixed Strategy CCOC 

Risk  𝑟 

Ex
pe

ct
ed

 C
os

t  
𝑐 

(𝜆⋆, 1) 

Optimal solution  
of mixed CCOC 

Optimal solution of pure strategy CCOC 

𝑢1 

𝑢2 

Dual optimal solution of pure strategy CCOC 

Δ 

Duality gap 

 = Dual optimal solution of mixed strategy CCOC Theorem 2 
 

Mixed-strategy CCOC 
problem does not have 
a duality gap 

Theorem 3 
 

The optimal mixed 
control strategy 
consists of up to two 
pure control strategies 
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How to Compute an  
Optimal Mixed Control Strategy? 

Risk  𝑟 

Ex
pe

ct
ed

 C
os

t  
𝑐 

(𝜆⋆, 1) 

𝑢1 

𝑢2 

Δ 

Idea: 
 

1. Solve the dual of pure 
strategy CCOC 

2. Obtain 𝑢1 and 𝑢2 
3.  𝑝1 =

𝑟2−Δ

𝑟2−𝑟1
, 𝑝2 =

Δ−𝑟1

𝑟2−𝑟1
 

4. Optimal mixed control 
strategy: choose 𝑢1 
with the probability of 
𝑝1, choose 𝑢2 with the 
probability of 𝑝2 
 

𝑟1  𝑟2  

𝑝2 ∶  𝑝1 
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Risk  𝑟 

Ex
pe

ct
ed

 C
os

t  
𝑐 

(𝜆⋆, 1) 

𝑢1 

𝑢2 

Δ 

Idea: 
 

1. Solve the dual of pure 
strategy CCOC 

2. Obtain 𝑢1 and 𝑢2 
3.  𝑝1 =

𝑟2−Δ

𝑟2−𝑟1
, 𝑝2 =

Δ−𝑟1

𝑟2−𝑟1
 

4. Optimal mixed control 
strategy: choose 𝑢1 
with the probability of 
𝑝1, choose 𝑢2 with the 
probability of 𝑝2 
 

𝑟1  𝑟2  

𝑝2 ∶  𝑝1 

How to Compute an  
Optimal Mixed Control Strategy? 
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Solving the Dual of CCOC 

Dual Problem 
 

max
𝜆

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] + 𝜆(Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ) 

Primal Problem 
 

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] 
s.t. Pr 𝑔 𝑢, 𝑤 ≻ 0 ≤ Δ 

𝑞(𝜆) 
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Solving the Dual of CCOC 

Dual Problem 
 

max
𝜆

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] + 𝜆(Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ) 

𝑞(𝜆) 
• 𝑞 𝜆  is always concave 
• Optimality condition: 0 ∈ 𝜕𝑞(𝜆) 

– 𝜕𝑞(𝜆): subgradient 
• Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ ∈ 𝜕𝑞(𝜆) 
• Therefore, dual optimization is reduce to a zero-

finding problem over 𝜕𝑞(𝜆) 
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Solving the Dual of CCOC 

Dual Problem 
 

max
𝜆

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] + 𝜆(Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ) 

𝑞(𝜆) 
• 𝑞 𝜆  is always concave 
• Optimality condition: 0 ∈ 𝜕𝑞(𝜆) 

– 𝜕𝑞(𝜆): subgradient 
• Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ ∈ 𝜕𝑞(𝜆) 
• Therefore, dual optimization is reduce to a zero-

finding problem over 𝜕𝑞(𝜆) 
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Solving the Dual of CCOC 

Dual Problem 
 

max
𝜆

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] + 𝜆(Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ) 

𝑞(𝜆) 
• For a given 𝜆, solve the unconstrained 

optimal control problem to find the optimal 
control 𝑢∗(𝜆) 

• Evaluate Pr 𝑔 𝑢∗(𝜆), 𝑤 ≻ 0 − Δ 
• If it is not zero, adjust 𝜆. 
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Solving the Dual of CCOC 

Dual Problem 
 

max
𝜆

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] + 𝜆(Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ) 

𝑞(𝜆) 
• Intuition 

– 𝜆 is a sensitivity to risk 
– Smaller 𝜆 : greater Pr 𝑔 𝑢∗(𝜆), 𝑤 ≻ 0  
– Greater 𝜆 : smaller Pr 𝑔 𝑢∗(𝜆), 𝑤 ≻ 0  

• Dual optimization = find 𝜆 that results in 
exactly Δ of risk. 
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CCDP: Dual Reformulation 

0 λ 
λ⋆ 

Too risk-taking 

Overly conservative 

Dual Problem 
 

max
𝜆

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] + 𝜆(Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ) 𝑞(𝜆) 

𝜕𝑞(𝜆) 

Pr 𝑔 𝑢∗(𝜆), 𝑤 ≻ 0 − Δ 
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CCDP: Problem Formulation 

0 λ 
λ⋆ 

𝑑𝑞

𝑑𝜆
− Δ 

Too risk-taking 

Overly conservative 

Dual Problem 
 

max
𝜆

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] + 𝜆(Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ) 𝑞(𝜆) 
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CCDP: Problem Formulation 

0 λ 
λ⋆ 

𝑑𝑞

𝑑𝜆
− Δ 

Too risk-taking 

Overly conservative 

Dual Problem 
 

max
𝜆

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] + 𝜆(Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ) 𝑞(𝜆) 
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CCDP: Problem Formulation 

0 λ 
λ⋆ 

𝑑𝑞

𝑑𝜆
− Δ 

Too risk-taking 

Overly conservative 

Dual Problem 
 

max
𝜆

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] + 𝜆(Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ) 𝑞(𝜆) 
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CCDP: Problem Formulation 

0 λ 
λ⋆ 

𝑑𝑞

𝑑𝜆
− Δ 

Interpretation: dual variable = penalty 
Too risk-taking 

Overly conservative 

Dual Problem 
 

max
𝜆

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] + 𝜆(Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ) 𝑞(𝜆) 
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Risk  𝑟 

Ex
pe

ct
ed

 C
os

t  
𝑐 

(𝜆⋆, 1) 

𝑢1 

𝑢2 

Δ 

Idea: 
 

1. Solve the dual of pure 
strategy CCOC 

2. Obtain 𝒖𝟏 and 𝒖𝟐 
3.  𝑝1 =

𝑟2−Δ

𝑟2−𝑟1
, 𝑝2 =

Δ−𝑟1

𝑟2−𝑟1
 

4. Optimal mixed control 
strategy: choose 𝑢1 
with the probability of 
𝑝1, choose 𝑢2 with the 
probability of 𝑝2 
 

𝑟1  𝑟2  

𝑝2 ∶  𝑝1 

How to Compute an  
Optimal Mixed Control Strategy? 
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CCDP: Problem Formulation 

0 λ 
λ⋆ 

𝑑𝑞

𝑑𝜆
− Δ 

Dual Problem 
 

max
𝜆

min
𝑢∈𝒰

𝔼[𝑓 𝑢, 𝑤 ] + 𝜆(Pr 𝑔 𝑢, 𝑤 ≻ 0 − Δ) 𝑞(𝜆) 

𝑢2 = 𝑢∗(𝜆) 

𝑢1 = 𝑢∗(𝜆) 
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Risk  𝑟 

Ex
pe

ct
ed

 C
os

t  
𝑐 

(𝜆⋆, 1) 

𝑢1 

𝑢2 

Δ 

Idea: 
 

1. Solve the dual of pure 
strategy CCOC 

2. Obtain 𝑢1 and 𝑢2 
3.  𝑝1 =

𝑟2−Δ

𝑟2−𝑟1
, 𝑝2 =

Δ−𝑟1

𝑟2−𝑟1
 

4. Optimal mixed control 
strategy: choose 𝑢1 
with the probability of 
𝑝1, choose 𝑢2 with the 
probability of 𝑝2 
 

𝑟1  𝑟2  

𝑝2 ∶  𝑝1 

How to Compute an  
Optimal Mixed Control Strategy? 
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Implementation  

• Can be used with any chance-
constrained optimal control problem, as 
long as its dual can be solved 
 

• Implemented on chance-constrained 
dynamic programming (CCDP)* 
 
 

24 

*Ono, Kuwata, Baralam, “Joint chance-constrained dynamic programming,” CDC-12 
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Application to Path Planning 

25 

Problem:  
• Minimize path length 
• Risk ≤ 2% 

• 𝑥𝑘+1 = 𝑥𝑘 + 𝑢𝑘 + 𝑤𝑘 
• 100x100 discrete state space 

Control 
strateg
y 

Expected 
path 
length 

Risk 

Pure 130.8 0.64
% 

Mixed 104.2 2.0% Risk: 2.28% 

Risk: 0.64% 
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Application to Mars Entry,  
Descent, and Landing 

26 

Problem:  
• Minimize driving 

distance to visit two 
science targets after 
landing 

• Risk ≤ 0.1% • 2000x2000 discrete state space 
• Used terrain data at E. 

Margaritifer on Mars 

Control 
strategy 

Expecte
d cost 

Risk 

Pure 645.49 0.016
% 

Mixed 644.81 0.1% 
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Conclusions 

• Characterized a mixed-strategy chance-
constrained optimal control problem using the 
MC/MC framework 
– It is a convexification of a pure-strategy chance-

constrained optimal control problem 
– Hence, there is no duality gap 

• Developed an algorithm that obtains an optimal 
mixed control strategy 
– Build upon the dual solution to a pure-strategy 

chance-constrained optimal control problem 
• Demonstrated the proposed algorithm on path 

planning and Mars EDL scenarios 
 

27 




