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coefficients of the differential operator are random processes. A description of the cloud dynamics within the spatial 
domain Ω can then be cast as a boundary value problem ([7], [8]) as  

  [Β(x,t) + G(x,t;ω )] u(x,t;ω ) = f(x,t;ω )  (1) 

together with the appropriate boundary conditions at the boundary of Ω, where x is the spatial scale, t is the temporal 
scale, ω is a random fluctuation, B is the deterministic operator describing the dynamics, G is the stochastic part whose 
coefficients are zero-mean random processes, and f is the vector of exogenous and control inputs. It is clear that, 
depending on the connectivity between the elements of the cloud, the B and G operators may be local or nonlocal 
operators derived from variational principles expressed in their weak form. This approach ensures a robust 
mathematical formulation since the stochastic nature of the states is reflected in the stochastic nature of the differential 
operators. 

3 Cloud Physics 

   To address the engineering applications, we need to have insight on physics of disorder systems and the dominant 
forces that perturb the cloud. Related background can be found in refs [13], [19], [23]. Cloud gravito-electrodynamics 
leads to self-organization: for a cloud of particles released from an orbiting vehicle, the diffusion characteristics are 
important, as well as the tendency to form natural ring-like structures governed by the local gravity gradients, solar 
pressure, and radiation properties of each individual grain.  The electrodynamic Lorentz coupling in LEO-GEO 
provides high degree of structural coherence which can be exploited in applicaitons. Once illuminated, the diffraction 
pattern from a disordered assembly leads to a strong focusing potential: the intensity of the signal is more collimated 
when the distribution of apertures is randomized, the separation between apertures increases, and the number of 
apertures increases. Focusing is achieved by modulating the phase of the distributed radiators so as to obtain a conic 
phase surface, and this leads naturally to the shaping a cloud in the form of a  lens. In space, the cloud behavior depends 
on the dynamic balance of different force fields: Laser light pressure, as light can induce motion; Solar illumination 
radiation pressure, which carries momentum; Gravitational forces and gradients, resulting in orbital and tidal effects; 
Electrostatic Coulomb or dielectrophoretic forces, since the grains are charged; Electromagnetic Lorentz forces 
resulting from the interaction with local magnetic field; Cloud self-gravity caused by the cloud being an extended body; 
Poynting-Robertson drag, in which grains tends to spiral down towards the Sun; and Yarkovstky (YORP) effect, caused 
by the anisotropic emission of thermal photons, which carry momentum. In the next sections, we describe the gravito-
electrodynamics coupling, and the opto-mechanical interaction. 

3.1 Cloud Gravito-electrodynamics 

To gain some insight into the physics of the problem, we can for the time being consider the dynamics of one grain and 
of a collection of grains separately. The equation of motion of one grain around planet rotating at Ωp: 

 r = − µr
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where ΩB is the plasma gyro-frequency, Ωp is the planet rotation rate, and ΩK is the Keplerian frequency, indicating that 
gravity, electromagnetic fields are coupled and interact with local plasma. For a cloud of particles released from an 
orbiting vehicle, the diffusion characteristics are important, as well as the tendency to form natural ring-like structures 
governed by the local gravity gradients, solar pressure, and radiation properties of each individual grain. As a system 
the orbital mechanics of a cloud can be modeled by the following equations: 
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These equations apply to an extended cloud of total mass m and moments of inertia J1, J2, J3 in the baricentric frame. 
The equations of motion are nonlinear and non-homogeneous and apply to any type of orbit. The attitude dynamics and 
the orbital dynamics are, indeed, coupled through the pitch angle α, which is not necessarily small, and through the true 
anomaly v.  When the orbit is circular, the cloud attitude dynamics is uncoupled from the orbital dynamics. The 
overallthrust direction (θ) and magnitude (f) affect both the orbital and attitude dynamics. The gravity gradient effect 
(represented by the terms in sinα and cosα) appears in all the equations. This state coupling has not yet been 
investigated in the literature.  Now, let us consider the local vertical-local horizontal (LVLH) frame Fo, and let’s look at 
the point located at ρ = x y z( )Fo from the origin of the moving coordinate system. Its relative acceleration in Fo is: 

ρi = − V0 − Ω
× +Ω×Ω×( )ρi − 2Ω× ρi + ai (ri , ri ,t)     (4) 

Then its gradient tensor can be computed in matrix form as:  
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Similarly, its gyroscopic tensor can be computed in matrix form as:  
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Taking the instantaneous orbit of 0 as reference, we can now look at the motion with respect to the moving origin, still 
nonlinear in the kinematics, by expanding the perturbation force in Taylor series about the reference configuration.  
Consequently, the TANGENT equations of motion can be written as: 
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As an example, consider a one-dimensional cloud. Consider the simple case of circular orbit with R0 = 0 0 R0( )Fo  

andΩ = ω0 0 0( )Fo , for which the gravitational gradient tensor becomes: 

Γ ij =
∂ρi
∂ρ j

= − Ω× +Ω×Ω×( )− µ

R0
3

∂
∂ρ j

R0 + ρi − 3
R0 iρi( )
R0

2 R0
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

   (8) 

 Then, the components of the gravitational gradient tensor are Γ11 = −ω0
2 ,  Γ33 = 3ω0

2

 

, which imply that the motion 
along x (along normal to orbital plane) is compressive, the motion along y (along velocity vector) experience no force, 
and the motion along z (along local vertical) is tensile.  

3.2 Opto-mechanical Interactions 

A spherical particle in the presence of light will experience both a scattering force in the direction of the beam axis, 
which is proportional to the irradiance, and a gradient force that may be expressed as Fgrad=-(1/2)α(gradE)2, where α is 
the polarizability of the particle [1], [3], .  The gradient force is the direction of the beam axis is negligible unless the 
beam is tightly focus. Beam shaping of a cloud of particles is possible by molding the cloud in with the gradient force, 
say in the x-y plane, and by further molding the cloud in the z-direction by the combined optical scattering force and 
gravitational forces arising from the orbital dynamics (tidal forces). At the moment of release the velocity distribution 
of the cloud may be represented by a probability distribution such as the Maxwell-Boltzmann distribution.  Without 
intervention, the cloud will diffuse to a rarified state where the particles move ballistically.   The gradient force required 
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