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The Low Density Supersonic Decelerator Project is developing a next-generation 
supersonic parachute for use on future Mars missions. In order to determine the new 
parachute configuration, a wind tunnel test was conducted at the National Full-scale 
Aerodynamics Complex 80- by 120-foot Wind Tunnel at the NASA Ames Research Center.  
The goal of the wind tunnel test was to quantitatively determine the aerodynamic stability 
and performance of various canopy configurations in order to help select the design to be 
flown on the Supersonic Flight Dynamics tests. Parachute configurations included the disk-
gap-band, ringsail, and ringsail-variant designs referred to as a disksail and starsail. During 
the wind tunnel test, digital cameras captured synchronized image streams of the parachute 
from three directions. Stereo photogrammetric processing was performed on the image data 
to track the position of the vent of the canopy throughout each run. The position data were 
processed to determine the geometric angular history of the parachute, which were then 
used to calculate the total angle of attack and its derivatives at each instant in time. Static 
and dynamic moment coefficients were extracted from these data using a parameter 
estimation method involving the one-dimensional equation of motion for a rotation of 
parachute. The coefficients were calculated over all of the available canopy states to 
reconstruct moment coefficient curves as a function of total angle of attack. From the 
stability curves, useful metrics such as the trim total angle of attack and pitch stiffness at the 
trim angle could be determined. These stability metrics were assessed in the context of the 
parachute’s drag load and geometric porosity. While there was generally an inverse 
relationship between the drag load and the stability of the canopy, the data showed that it 
was possible to obtain similar stability properties as the disk-gap-band with slightly higher 
drag loads by appropriately tailoring the geometric porosity distribution. 
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Nomenclature 
Cm  static moment coefficient 
Cm0   local intercept of static moment curve 

Cmα   local slope of static moment curve 

Cm α   dynamic moment coefficient 
CT  tangential force coefficient 
D0  parachute reference diameter 
g  acceleration due to gravity 
m  mass of the parachute canopy 
Maero

  Moment due to canopy aerodynamics 
Qw  local dynamic pressure at the canopy 
Rcm  distance from the ball joint to the canopy center of mass 
Rcp  distance from the ball joint to the canopy center of pressure 
Rv  distance from the ball joint to the canopy vent 
S0  parachute reference area 
Vc  wind velocity at the canopy 
Vw  wind velocity at the canopy corrected for canopy rotation 
Vt  velocity of the canopy tangent to its arc of motion 
x, y, z  wind tunnel frame coordinates (x streamwise, y lateral, z vertical) 
α  angle of attack 
αG  total geometric angle 
αT  total angle of attack 
β  sideslip angle 
Δα, Δβ  dynamic contribution to the angle of attack and sideslip angle, respectively 
γ  geometric angle between Vc and Vt 
φ  clock angle (angle from vertical of wind tunnel axis projected onto yz-plane, positive clockwise) 
θ, ψ  geometric pitch and yaw angles 
Ω  magnitude of the angular velocity of the canopy 
 
Subscripts 
v  location of the canopy vent 
θ  motion in the pitch plane 
ψ  motion in the yaw plane 
trim  trim angle of attack 
 
Superscripts 
’  parachute body axes 
 
Acronyms 
LDSD  Low Density Supersonic Decelerator 
DGB   disk-gap-band 
DS  disksail 
NFAC  National Full-scale Aerodynamics Complex 
PIA  Parachute Industry Association 
RMS  root mean square 
RS  ringsail 
SS  starsail 
TDT   Transonic Dynamics Tunnel  

I. Introduction 
he Low Density Supersonic Decelerator (LDSD) project is developing a next-generation supersonic parachute 
to be considered for use on future Mars missions. The resulting canopy design is expected to update or replace 

the disk-gap-band (DGB) parachute that has flown on all previous U.S. missions to the surface of Mars. Many 
T 
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canopy variations were considered including ringsail and DGB parachutes as well as new designs referred to as 
disksail and starsail parachutes in order to understand the effects of distributing porosity throughout a canopy.1  

LDSD quantified the stability characteristics of each canopy design through wind tunnel testing of sub-scale 
canopies (approximately 35% scale) with representative gore and ring structure. Static and dynamic aerodynamic 
coefficients (Cm and Cm α , respectively) were estimated for each canopy as a function of total angle of attack (αT). 
The aerodynamic coefficient curves were used to obtain stability metrics such as the trim total angle of attack and 
slope of the static aerodynamic curve at the trim total angle of attack for each canopy. These metrics help quantify 
the stability of each parachute so that they may be compared relative to one another.  

Stability is an important factor in overall parachute performance. Chaotic motions of a parachute have the 
potential to disrupt guidance algorithms used to control the entry vehicle during descent and risk causing system 
instability. However, experimental determination of parachute aerodynamics is difficult because they are highly 
flexibly structures, have complex flow interactions, and exhibit apparent mass effects. A test in the NASA Langley 
Transonic Dynamics Tunnel (TDT) that was able to characterize some these effects by holding a textile parachute at 
the vent and rotating the parachute-payload system through a range of angles of attack.2 While this test was 
technically more accurate than previous experiments using rigid parachute models, the error resulting from 
artificially holding the parachute at a constant angle of attack was not quantified. Moreover, this method of testing is 
not feasible in larger facilities such as NFAC due to the cost of constructing the necessary moving fixtures.  

A second portion of the TDT test involved using a free flying parachute to determine drag performance.2 A few 
years after the completion of the test, Schoenenberger et al. used video data from a downstream camera to extract 
the parachute stability coefficients.3 By tracking the placement of the canopy vent in each video frame and 
transforming those data into a two-dimensional position in space, the total angle of attack and its first and second 
derivatives could be computed. These values were subsequently used in a parameter estimation methodology to 
calculate the static and dynamic aerodynamic coefficients at a given total angle of attack. The aerodynamics 
calculated for the DGB parachute correlated well with the static test results for the same canopy. 2 This parameter 
estimation methodology outlined in reference 2 is well suited to large-scale parachute testing and is the primary 
method being used to resolve the parachute stability characteristics. 

Since the conversion of video data into parachute aerodynamics was not a primary objective of the TDT 
experiment, several approximations had to be made in order to compensate for the lack of some pieces of data. In 
particular, the use of a single downstream video camera caused ambiguity in the parachute location and the rapid 
motion of the canopy relative to the video frame rate induced error in the calculation of the angular rates and 
accelerations. The LDSD wind tunnel test attempted to improve knowledge of the parachute position by utilizing 
stereo photogrammetry and calculation of the angular derivatives were improved with data acquisition occurring at 
60 Hz.  

II. Test Setup 

A. Canopy Description 
LDSD tested a total of 4 different canopy types and a total of 13 different configurations.1 The test articles had a 

nominal diameter (D0) of 11.8 m (38.8 ft) and used a suspension line length of 1.7D0. The majority of the canopies 
were constructed from PIA-C-44378 “F-111” nylon broadcloth, which has a fabric permeability less than 5 
ft3/min/ft2 per its specification. For the canopies constructed from F-111 nylon, the total porosity is assumed to be 
equal to the geometric porosity since the contribution from the fabric porosity is assumed to be negligible. The 
canopy designs that were tested are discussed below. Note that higher number rings are located further away from 
the canopy apex (closer to the canopy skirt). 

1) Disk-gap-band: DGB canopies are constructed by separating a flat circular disk and a cylindrical band of 
fabric by an open gap to aid in stability.  The DGB canopy serves as the reference by which all of the next-
generation parachutes are assessed. Two configurations were tested: 

a. DGB-1: a flight spare of the parachute used for the Mars Phoenix Scout lander mission, 
constructed using MIL-C-7020 Type I nylon, which has a permeability of approximately 100 
ft3/min/ft2. For this canopy, the contribution from fabric porosity is non-negligible and the total 
porosity was calculated to be between 12-18%.  

b. DGB-2: a replica of the Phoenix DGB constructed using F-111 nylon. This test article is shown in 
Fig. 1a. 

2) Ringsail: ringsail parachutes are modifications of ringslot parachutes that add fullness to the fabric panels 
and allow for more airflow through the canopy. Five configurations were tested: 
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a. RS-0: a subscale version of a Ringsail parachute tested by JPL in 2005.4 A picture of this test 
article is shown in Fig. 1b. 

b. RS-1: the RS-0 canopy with two-thirds of ring 19 removed. 
c. RS-2: the RS-0 canopy with 27% of rings 17, 18 and 19 removed. 
d. RS-3: the RS-0 canopy with all of ring 19 removed.  
e. RS-4: the RS-0 canopy with all of rings 18 and 19 removed. 

3) Disksail: the disksail canopy is a modification of the Ringsail canopy that replaces the first ten rings around 
the canopy vent with a flat circular disk. The goal of this configuration was to decrease geometric porosity in 
the crown of the parachute to increase drag and allow that porosity to be redistributed to other portions of the 
canopy. Five configurations were tested: 

a. DS-1: the disksail as described above and as shown in Fig 1c. 
b. DS-2: the DS-1 canopy with half of ring 11 removed. 
c. DS-3: the DS-1 canopy with all of ring 11 removed. 
d. DS-4: the DS-1 canopy with all of ring 11 and half of ring 17 removed. 
e. DS-5: the DS-1 canopy with all of ring 11 and half of rings 17 and 18 removed. 

4) Starsail: the starsail canopy is a modification of the Ringsail where multiple gores are replaced with a solid 
material creating a star pattern. The goal of this configuration is change how the geometric porosity is 
distributed throughout the canopy to retain drag and obtain some desirable stability characteristics. Portions 
of rings 17-20 were removed to obtain a geometric porosity approximately equal to the DGB. One starsail 
configuration was tested and is shown in Fig. 1d. 

 

 
 

Each canopy was equipped with fourteen retro-reflective targets on both 
sides of the canopy that appeared in high contrast against the test article and 
allowed for the canopy to be more easily tracked by the photogrammetry system 
described in Section II.C. Fiducial target material was carefully selected to 
maximize light return across a relatively broad range of incidence angles. 
Targets were located in three concentric rings around the vent with coded target 
patterns on the outer-most ring to resolve parachute roll about its axis of 
symmetry. The target pattern is shown in Fig. 2. 

B. Test Conditions 
The wind tunnel testing was performed at the National Full-scale 

Aerodynamics Complex (NFAC) 80- by 120-foot (80x120) Wind Tunnel at the 
NASA Ames Research Center. Parachutes were fixed to a strut at the center of 
the test section via a load arm and ball joint. Mounted to the front of the strut 
was an aeroshell simulator, which was intended to approximate the wake generated by the forebody that will be 
present during future flight tests. This aeroshell simulator was fixed to the strut and was not allowed to move with 
the parachute. A diagram of the test setup can be seen in Fig. 3. 

The canopies were tested at nominal freestream wind velocities of both approximately 15 and 25 kts. Pressure 
probes measured the dynamic pressure during the test and were located both upstream of the strut to measure the 
freestream conditions and downstream of the canopy skirt to measure blockage effects.  

    
(a) disk-gap-band (b) ringsail (c) disksail (d) starsail 

Figure 1. Primary canopy configurations used in NFAC testing. 

 
Figure 2. Retro-reflective 
target pattern on each test 

article. 
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C. Photogrammetry System 

1. Photogrammetry Setup 
The purpose of the photogrammetry system was accurately measure the position of the test articles in three-

dimensional space in order to estimate their static and dynamic stability characteristics. The photogrammetry 
hardware consisted of three high-resolution (2352x1728 pixels) synchronized cameras, two downstream of the 
parachute on the floor of the test section diffuser and one upstream of the parachute mounted on the strut just below 
tunnel centerline. The locations of the cameras and the choice of lenses were determined using virtual-imaging 
software to predict the camera views and ensure that the canopies would be visible over the expected range of 
positions.5 The two downstream cameras were placed symmetrically near the corners of the test section to provide 
stereo imaging of the outer surface of the canopy. They were located sufficiently far downstream to be able to view 
the retro-reflective targets on the canopy at up to 20° total angle of attack in any direction. The upstream camera was 
mounted just below the riser attachment and provided a full view of the inside surface of the canopy. The cameras 
acquired images at 60 Hz – more than ten times the oscillation frequency of the parachute, thereby eliminating any 
aliasing of the canopy motion. High-intensity lamps were placed next to each camera to maximize the light output of 
the retro-reflective targets on the canopy and minimize the uncertainty in the position tracking. The photogrammetry 
configuration relative to the overall test set-up can be seen in Fig 3. A synchronized view from each of the 
photogrammetry cameras is shown in Fig. 4. 

2. Photogrammetry Calibration 
The biggest challenge in making photogrammetry measurements on such a large scale was calibrating the 

cameras. Therefore, two independent calibration methods were used, which provided verification for each other. The 
first and simplest method was the Direct Linear Transformation, which required first placing and focusing the 
cameras and then imaging at least six targets in the region of interest whose spatial coordinates were known.6 The 

 
Figure 3. Planview of the wind tunnel test section. 

   
(a) View from west camera (b) View from east camera (c) View from strut camera 

Figure 4. Synchronized images from the three photogrammetry camera views. Stereo photogrammetric 
measurements were computed using the east and west views. 
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second method required first measuring the “internal orientation” of each camera (focal length, lens distortion 
corrections, and location of the optical axis in the image plane) before the cameras were mounted. This was 
accomplished by acquiring images with each camera of a planar array of known targets. These targets were applied 
in a rectangular grid to one sidewall of the test section. Then, after the cameras were mounted in their final positions 
and pointed, the spatial positions and point angles of the cameras (“external orientation”) were computed from 
images of a set of targets in the fields of view whose spatial coordinates were known.  
 

Calibration targets were placed on a crane positioned in the region of interest, the strut fairing, and the test 
section sidewalls. The space coordinates of the calibration targets were precisely determined by imaging them from 
many directions using a commercial photogrammetry system. Both the Direct Linear Transform and 
internal/external orientation methods resulted in coefficients for each camera, which, together with image-plane 
coordinates of targets that appear in the images of at least two cameras, allowed computation of the space 
coordinates of the targets. Unlike the single-camera measurements used in reference 3 and previous photogrammetry 
measurements of parachutes in the 80x120,7 the stereo imaging method used for this test allowed for accurate three-
dimensional tracking of the vent without assuming a constant distance from the canopy to the point of rotation. 

3. Photogrammetry Validation 
The uncertainty in the photogrammetry system was determined by comparing the camera measurements of 

verification targets against their known coordinates. Measurements were made with the targets supported on a lift at 
three different heights and three different lateral locations at the streamwise position of the canopies. The relative 
error of the photogrammetry measurements was determined by first translating and rotating the measured 
coordinates of the targets to minimize the root mean square (RMS) difference with the true coordinates. The 
resulting minimum RMS error was less than half of an inch. The uncertainty in the absolute position of the targets 
was estimated by dangling a tape measure and plumb bob from the rig to the floor of the test section and then 
measuring to known reference points. Based on these measurements, the uncertainty in absolute position was less 
than one inch. These uncertainty estimates are consistent with the expected uncertainty due to a one-pixel error in 
locating targets in the images. The spatial position of the vent was calculated using both the Direct Linear 
Transformation and the internal/external calibration methods, resulting in similar coordinates. The internal/external 
calibration method was ultimately selected to generate all of the data herein. 

III. Data Analyses 

A. Canopy Vent Coordinates to Geometric Angles  
Once the position history of the canopy was determined, 

the coordinates of the vent were converted into geometric 
angles, which are more convenient for describing the 
rotational motion of the parachute. Geometric angles are 
defined here as angles that are dependent only on the 
parachute’s position with respect to the wind tunnel and do 
not take into account the parachute’s motion with respect to 
the wind. A diagram showing the wind tunnel and parachute 
reference frames as well as the relevant geometric angles is 
shown in Fig. 4. The wind tunnel frame is denoted as {x, y, z} 
and the parachute frame is denoted as {x’, y’, z’} with the 
origin located at the ball joint, The parachute angular 
velocity is defined as Ω. The parachute and wind tunnel 
frames are related by a series of Euler rotations, first by the 
pitch angle (θ) about the y-axis, followed by the yaw angle 
(ψ) about the z’-axis. The full rotation matrix can be seen in 
Eq. (1).  
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Figure 5. Wind tunnel and canopy coordinate 

systems. 
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The length of the parachute from the ball joint to the vent is defined as Rv. Knowing Rv and the {xv, yv, zv} 

coordinates of the canopy vent, the pitch and yaw angles can be calculated via Eqs. (3) and (4).  
 
 Rv = xv

2 + yv
2 + zv

2   (2) 

 θ = sin−1 − zv
Rv cosψ

"

#
$

%

&
'  (3) 

 ψ = sin−1 yv
Rv

"

#
$

%

&
'  (4) 

 
Two other geometric angles that are convenient to define are the total geometric angle (αG) and clock angle (φ). 

The total geometric angle is the total angular distance between the parachute x’-axis and the wind tunnel x-axis. 
Note that the total geometric angle is not the same as the total angle of attack, which will be defined later. The clock 
angle describes the parachute position in the yz-plane when looking upstream. It is defined to be φ = 0 when yv = 0 
and zv > 0 and φ = π/2 when zv = 0 and yv > 0. The total geometric angle and the clock angle can be calculated via 
Eqs. (5) and (6). 
 

 αG = cos
−1 xv

Rv

"

#
$

%

&
'  (5) 

 φ = tan−1 sinθ cosψ
sinψ
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#
$

%

&
'  (6) 

 

1. Calculating the Total Angle of Attack and its Derivatives 
The total angle of attack can be expressed in terms of the traditional angle of attack and sideslip as in Eq. (7). 

Note that the total angle of attack is always positive due to its physical definition.  
 
 αT = cos

−1 cosα cosβ[ ]  (7) 
 

If the canopy is stationary, then the angle of attack is equal to the pitch angle, the sideslip angle is equal to the 
yaw angle, and the total angle of attack is equal to the total geometric angle. However, if the parachute is moving, 
then the rotational motion alters the local wind velocity at the canopy and introduces dynamic contributions 
(Δα, Δβ) to the geometric pitch and yaw angles, as in Eqs. (8).  

 
 α =θ +Δα  (8.1) 

 β =ψ + Δβ  (8.2) 
  

Calculating the aerodynamic coefficients requires knowledge of the first and second derivatives of the total angle 
of attack with respect to time, which can be calculated using finite differencing. However, since αT is always 
positive, its value can change very rapidly and potentially create non-smooth derivatives. An analytic method of 
calculating the first and second derivatives of the total angle of attack was developed that only requires finite 
differencing of the aerodynamic angles α and β. These angles have both positive and negative magnitudes and vary 
smoothly and periodically in time, making them well suited for differentiation via finite differencing. The first and 
second derivatives of the total angle of attack are given in Eqs. (9) and (10). Additional details regarding the 
calculation Δα, Δβ, and their respective derivatives are given in Appendices A and B. 
 

 αT =
α sinα cosβ + β cosα sinβ

sinαT

 (9) 

 αT =
α sinα cosβ + β cosα sinβ + ( α 2 + β 2 − αT

2 )cosαT − 2 α β sinα sinβ
sinαT

 (10) 
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B. Local Wind Velocity at the Canopy  
The total wind velocity at the canopy is the vector sum of the freestream wind velocity (Vc) and the velocity 

tangent to the canopy’s arc of motion (Vt). Note that the wind velocity resulting from the canopy’s rotational motion 
is equal and opposite to the tangential velocity of the canopy, thus it is subtracted from the Vc as in Eq. (11.1). The 
total wind velocity (Vw) is the magnitude (L2- norm) of the total wind velocity vector (Vw) given in Eq. (11.2). 

 
 Vw =Vc −Vt  (11.1) 

 Vw = Vc − xcp( )2 + ycp2 + zcp2  (11.2) 

 
The velocity of the canopy tangent to its arc of motion can be expressed in terms of the Euler angles (See Fig. 4) 

as in Eq. (12). The canopy velocity is taken at the center of pressure (Rcp), which is where the aerodynamic forces 
are assumed to act. 
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 (12)

 

C. Calculating the Aerodynamic Coefficients 
The angular behavior with respect to the wind described in Section III.A can be used to determine the canopy 

stability coefficients using parameter estimation.3 Given that the parachute is an axisymmetric body, the entire 
attitude history can be decomposed into motion in two directions - in the same direction as the total angle of attack 
and in the direction orthogonal to the total angle of attack. It is assumed in this analysis that the time-averaged 
aerodynamic coefficients in the direction orthogonal to the total angle of attack are zero. The only other necessary 
parameter is the clock angle φ, which is solely used to calculate the influence of gravity.  

The aerodynamic moments on the parachute are represented as a static moment, dependent on the parachute’s 
total angle of attack, and a dynamic moment, dependent on the instantaneous rate of change of the total angle of 
attack. The static moment curve is locally linearized at each total angle of attack into the pitch stiffness Cmα  and the 

moment at 0° total angle of attack Cm0 , as in Eq. (13.1). The resulting expression for the total aerodynamic moment 
is given in Eq. (13.2) where Qw is the dynamic pressure accounting for canopy rotation, S0 is the parachute reference 
area, and D0 is the parachute reference diameter.  
 
 Cm =Cmα

αT +Cm0  (13.1) 

 Maero =QwS0D0 Cm α

D0

2V∞
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αT +Cm0
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&
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The one-dimensional rotational equation of motion can be expressed as in Eq. (14), where Iyy is the moment of 

inertia of both the canopy and the apparent mass, m is the mass of the canopy only, and g is the gravitational 
acceleration. Equation (14) can be rearranged to explicitly solve for the aerodynamic moment coefficients as seen in 
Eq. (15). 
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 Vw = Vc
2 + Rcp

2 θ 2 − 2Vc Rcp θ cos
π
2
+ sign θ( )θ"

#$
%

&'
 (20.2) 

 
With 𝑉!, 𝑉!, and 𝛾 known, Δ𝛼 can be calculated via the Law of Sines. The resulting expression for Δ𝛼 is seen in 

Eqs. (21.1) and (21.2). 
 

 sinΔα
Vtθ

=
sinγθ
Vwθ

 (21.1) 

 

 Δα = sin−1
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The aerodynamic angle of attack is the sum of the geometric pitch angle and the dynamic contribution to the 

angle of attack. Thus, the angle of attack is calculated via Eqs. (22.1) and (22.2). 
 
 α =θ +Δα  (22.1) 
 

 α =θ + sin−1
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Since the parachute is axis-symmetric, motion in the yaw plane is equivalent to motion in the pitch plane. Thus, 

the derivation for the aerodynamic sideslip angle follows the same procedure as for the angle of attack resulting in 
Eq. (23). 
 

 β =ψ + sin−1
Rcp ψ

Vc
2 + Rcp

2 ψ 2 − 2Vc Rcp ψ cos
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 (23) 

 
The total angle of attack is similar to the total geometric angle except it is computed from the aerodynamic 

angles instead of geometric angles and, as a result, takes into account the canopy rotation. The total angle of attack 
can be calculated via Eqs. (24.2) and (24.3) by recognizing that the two transformations (given in Eq. (24.1)) of the 
location of the canopy vent from the parachute frame to the wind tunnel frame are equivalent. Note that the total 
angle of attack is always positive due to its physical definition.  
 
 Rvx̂ ' = Rv cosα cosβ x̂ = Rv cosαT x̂  (24.1) 
 
 cosαT = cosα cosβ  (24.2) 
 
 αT = cos

−1 cosα cosβ[ ]  (24.3) 

B. Calculating Derivatives of the Total Angle of Attack 
The derivative of the total angle of attack can be calculated by taking the derivative of Eq. (24.2). 𝛼! can be 

found after taking the chain rule as seen in Eq. (25).  
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 αT =
α sinα cosβ + β cosα sinβ

sinαT

 (25) 

 
The derivative of the angle of attack can be found from the differentiation of its definition in Eq. (22.1). The 

derivative of the sideslip angle can be found in the same manner. The expressions for the derivatives of the angles of 
attack and sideslip are seen in Eqs. (26.1) and (26.2). 
 
 α = θ +Δ α  (26.1) 
 
 β = ψ +Δ β  (26.2) 
 

The derivative of the dynamic contribution to the angle of attack can be found by differentiating Eq. (21.1) and is 
calculated via Eq. (27.1). The derivative of the dynamic contribution to the sideslip angle is found in the same way 
and is calculated via Eq. (27.2). 
 

 Δ α =
VtθVwθ −Vtθ Vwθ

Vwθ
2

sinγθ
cosΔα

+
Vtθ
Vwθ

cosγθ
cosΔα

γθ  (27.1) 

 

 Δ β =
VtψVwψ −Vtψ Vwψ

Vw
ψ

2

sinγ
ψ

cosΔβ
+
Vt

ψ

Vwψ

cosγ
ψ

cosΔβ
γ
ψ

 (27.2) 

   
The derivatives of the tangential canopy velocity in the pitch plane, 𝛾!, and the actual wind velocity in the pitch 

plane can be found by differentiating Eqs. (18), (19) and (20.1) and are calculated via Eqs. (28.1.1), (28.1.2), and 
(28.1.3) respectively. The derivatives of the tangential canopy velocity in the yaw plane, 𝛾!, and the actual wind 
velocity in the yaw plane can be found in the same way and are calculated via Eqs. (28.2.1), (28.2.2), and (28.2.3) 
respectively. 
 
 Vtθ = Rcp θ  (28.1.1) 
 
 γθ = θ  (28.1.2) 
 

 Vwθ =
Vtθ Vtθ −Vc cosγθ( )+ γθVcVtθ sinγθ

Vwθ
 (28.1.3) 

 
 Vtψ = Rcp θ  (28.2.1) 
 
 γψ = ψ  (28.2.2) 
 

 Vw
ψ
=
Vt
ψ
Vtψ −Vc cosγψ( )+ γψ

VcVt
ψ
sinγ

ψ

Vw
ψ

 (28.2.3) 

 
The second derivative of the total angle of attack can be calculated by twice differentiating Eq. (24.2). 𝛼! can be 

solved for after taking the chain rule as seen in Eq. (29).  
 

 αT =
α sinα cosβ + β cosα sinβ + α 2 + β 2 − αT

2( )cosαT − 2 α β sinα sinβ
sinαT

 (29) 
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The second derivative of the angle of attack can be found from twice differentiating Eq. (22.1). The second 
derivative of the sideslip angle can be found in the same manner. The expressions for the second derivatives of the 
angles of attack and sideslip are seen in Eqs. (30.1) and (30.2). 
 
 α = θ +Δ α  (30.1) 
 
 β = ψ +Δ β  (30.2) 
 

The second derivative of the dynamic contribution to the angle of attack can be found by twice differentiating Eq. 
(21.1) and is calculated via Eq. (31.1). The second derivative of the dynamic contribution to the sideslip angle is 
found in the same way and is calculated via Eq. (31.2). 
 

 Δ α = 1
cosΔα

VtθVwθ −Vtθ Vwθ( ) Vwθ2( )− VtθVwθ −Vtθ Vwθ( ) 2Vwθ Vwθ( )
Vwθ
4 sinγθ +

2
VtθVwθ −Vtθ Vwθ

Vwθ
2

γθ cosγθ +
Vtθ
Vwθ
γθ
2 sinγθ + γθ cosγθ( )+Δ α 2 sinΔα

#

$

%
%
%
%
%

&

'

(
(
(
(
(

 (31.1) 

 

 Δ β = 1
cosΔβ

VtψVwψ −Vtψ Vwψ( ) Vwψ2( )− VtψVwψ −Vtψ Vwψ( ) 2Vwψ Vwψ( )
Vwψ
4 sinγψ +

2
VtψVwψ −Vtψ Vwψ

Vwψ
2

γψ cosγψ +
Vtψ
Vwψ

γψ
2 sinγψ + γψ cosγψ( )+Δ β 2 sinΔβ

#

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

  (31.2) 

 
The second derivatives of the tangential canopy velocity in the pitch plane, 𝛾!, and the actual wind velocity in 

the pitch plane can be found by twice differentiating Eqs. (18), (19) and (21.1) and are calculated via Eqs. (32.1.1), 
(32.1.2), and (32.1.3) respectively. The second derivatives of the tangential canopy velocity in the yaw plane, 𝛾!, 
and the actual wind velocity in the yaw plane can be found in the same way and are calculated via Eqs. (32.2.1), 
(32.2.2), and (32.2.3) respectively. 
 
 Vtθ = Rcpθ  (32.1.1) 
 
 γθ = θ  (32.1.2) 
 

 Vwθ =
1
Vwθ

Vtθ
2 + Vtθ Vtθ −Vc cosγθ( )+ 2 γθVc Vtθ sinγθ +VcVtθ γθ sinγθ + γθ2 cosγθ( )− Vwθ2"

#
$
%  (32.1.3) 

 
 Vtψ = Rcpψ  (32.2.1) 
 
 γψ = ψ  (32.2.2) 
 

 Vwψ =
1
Vwψ

Vtψ
2 + Vtψ Vtψ −Vc cosγψ( )+ 2 γψVc Vtψ sinγψ +VcVtψ γψ sinγψ + γψ2 cosγψ( )− Vwψ2"

#
$
%  (32.2.3) 

C. Local Wind Velocity at the Canopy  
The parachute center of pressure can be expressed in the inertial frame via the transformation matrix in Eq. (1). 

The inertial coordinates of the center of pressure are found in Eq. (33). 
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 Rcp = Rcp

cosθ cosψ
sinψ

−sinθ cosψ

"

#

$
$
$
$

%

&

'
'
'
'

 (33) 

 
The inertial angular velocity of the canopy can be determined by transforming the geometric angular rates via 

Euler transformation matrixes as seen in Eqs. (34.1) and (34.2). For a geometric interpretation of inertial angular 
velocity, see Fig. 4.  

 

 Ω =
cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

"

#

$
$
$

%

&

'
'
'

0
θ
0

"

#

$
$
$

%

&

'
'
'
+

cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

"

#

$
$
$

%

&

'
'
'

cosψ −sinψ 0
sinψ cosψ 0
0 0 1

"

#

$
$
$
$

%

&

'
'
'
'

0
0
ψ

"

#

$
$
$

%

&

'
'
'

  (34.1) 

 

 Ω =

ψ sinθ
θ

ψ cosθ

!

"

#
#
#
#

$

%

&
&
&
&

 (34.2) 

 
Knowing the inertial coordinates of the parachute center of pressure and the inertial angular velocity, the 

tangential velocity of the canopy can be determined via Eqs. (35.1) and (35.2). 
 
 Vt =Ω ×Rcp  (35.1) 
 

 Vt =

xcp
ycp
zcp

!

"

#
#
#
#

$

%

&
&
&
&

= Rcp

− θ sinθ cosψ − ψ cosθ sinψ
ψ cosψ

− θ cosθ cosψ + ψ sinθ sinψ

!

"

#
#
#
#

$

%

&
&
&
&

 (35.2) 

 
The total wind velocity at the canopy is the sum of the freestream wind velocity and the wind velocity due to 

tangential motion of the canopy as seen in Eq. (36.1). Note that the wind velocity due to the motion of the canopy is 
the negative of 𝑉! since it acts in the opposite direction. The parameter of interest, 𝑉!, is the magnitude (L2- norm) of 
the total wind velocity vector (𝑽𝒘) and can be found via Eq. (36.2). 

 

 Vw =

Vc
0
0

!

"

#
#
#
#

$

%

&
&
&
&

−

xcp
ycp
zcp

!

"

#
#
#
#

$

%

&
&
&
&

=

Vc + Rcp( θ sinθ cosψ + ψ cosθ sinψ)

−Rcp ψ cosψ

Rcp( θ cosθ cosψ − ψ sinθ sinψ)

!

"

#
#
#
#

$

%

&
&
&
&

 (36.1) 

 

 Vw = Vc − xcp( )2 + ycp2 + zcp2  (36.2) 
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