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Abstract 
 

    This work concentrates the modeling 
efforts presented in last year’s VSGC 
conference paper, “Model Development for 
Cable-Harnessed Beams.”  The focus is 
narrowed to modeling of space-flight cables 
only, as a reliable damped cable model is not 
yet readily available and is necessary to 
continue modeling cable-harnessed space 
structures.  New experimental data is 
presented, eliminating the low-frequency 
noise that plagued the first year’s efforts.  The 
distributed transfer function method is applied 
to a single section of space flight cable for 
Euler-Bernoulli and shear beams.  The work 
presented here will be developed into a 
damped cable model that can be incorporated 
into an interconnected beam-cable system.  
The overall goal of this work is to accurately 
predict natural frequencies and modal 
damping ratios for cabled space structures.  
 

Background 
 

    Sending mass into space is expensive, 
so there has been great incentive to develop 
strong and lightweight materials for use in 
constructing satellites and other space 
structures.  While materials science has 
developed lighter materials, the space-flight 
cables that are used have seen virtually no 
mass reduction.  In addition, the ever-
increasing sophistication of space technology 
means that the power and signal requirements 
have not diminished, and just as many, if not 
more, cables are required for each structure.  
Therefore, cable mass is making up a much 
larger percentage of the entire structure, 
typically 4-15% and as high as 30% in some 
cases (Babuska, Ardelean, Robertson and 

Lane, 2010).  Another source finds cables 
comprising 4 to 20 percent of the total 
structure’s mass (Goodding, Babuska, 
Griffith, Ingram, & Robertson, 2007), and the 
author has found 10% to be the typical design 
guideline at a space flight facility.   
        Precision control of space structures is 
affected by the dynamic response of the 
structure, which is affected in turn by the mass 
and mass distribution of the structure.  In 
addition, the natural frequencies and damping 
effects of the structure are important 
considerations when determining whether the 
structure can survive the extreme vibrations of 
launch.   
      In the past, cables were treated as a 
lumped mass; the total mass of the cable was 
calculated and added as a lump at the center of 
gravity of the structure.  Research conducted 
by the Air Force Research Laboratory Space 
Vehicles Directorate has shown that this is no 
longer adequate, and that wiring harnesses 
should be included as structural mass.  Models 
for space structures should be as accurate as 
possible and include cables as structural, 
rather than lumped, mass to determine 
whether the structure will fail and how it will 
respond to controls or movement instructions.       
       The long-term goal of this research is 
to produce models that can accurately predict 
the dynamic response of space structures, 
including the effects of damping or interaction 
due to cables and wiring harnesses on the 
structure.  At this time, there is not yet a 
reliable damped cable model that can 
accurately predict the natural frequencies and 
damping characteristics of space flight cables.  
Thus, an important step in this research is to 
develop a model that can accurately describe 
the dynamic behavior of space flight cables.  
 Previous work involved modal testing 
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of cable-harnessed beams and models of the 
cabled-beam system (Spak & Inman, 2012), 
but it was soon evident that a model for the 
cable specifically would be required that could 
include the cable's inherent damping effects 
and unique non-homogenous and non-
isotropic properties. 
    

Modeling 
 
      After investigating different types of 
cable modeling, the author concluded that a 
beam model would be the most appropriate 
choice, combining ease of calculation of the 
dynamic response with accuracy if the cable 
properties could be determined carefully.  
Although the beam model assumes a 
homogenous and isotropic material, by 
“smearing” the cable properties over the cable 
area, it should be possible to determine 
equivalent cable properties that can give 
reasonable results.  Regardless of the type of 
model used, a method to include the internal 
damping inherent in the cable was also 
necessary.  The authors hypothesized that 
hysteretic damping, in which the energy lost is 
due to the motion between molecules within 
the structure, would be an appropriate way to 
model the internal damping of the cable.  The 
hysteretic damping added computational time 
to the model solutions, but not as much time 
as the increase in matrix entries due to the 
inclusion of shear and rotational inertia 
effects.      

Both the cable and beam were 
modeled as Euler-Bernoulli beams initially, 
although research from AFOSR indicates that 
the cable is modeled more accurately as a 
shear beam (Babuska, Ardelean, Robertson, & 
Lane, 2010).  Based on this research and the 
flexibility of the cables, a shear beam model 
and Timoshenko model (including both shear 
and rotary inertia) were created.  The 
Timoshenko model was computationally 
intense once damping terms were included 

and was rejected in favor of the shear model, 
which still takes shear effects into account but 
contains fewer entries in the transfer function 
matrix.  Results from the Timoshenko model 
with hysteretic damping showed that the 
hysteretic damping model would require more 
dissipation coordinates to effectively describe 
the physical damping present (Spak, Agnes & 
Inman, 2013).  

   
Distributed Transfer Function Method 

The distributed transfer function 
method yields an exact solution, and its only 
computationally intense step is the 
determination of the exponential matrix 
required for the eigenvalue calculation of 
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where M(s) and N(s) are matrices that 
represent the boundary conditions and F(s) is a 
matrix based on the Laplace transform of the 
equations of motion (Yang, 2005, Yang & 
Tan, 1994).  For the system of a single bare 
cable with pinned-pinned end conditions 
modeled as an Euler-Bernoulli beam or shear 
beam with applied axial tension T, 
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The transfer function matrix F(s) changes 
depending on the equation of motion, with the 
more complex shear and Timoshenko models 
having more entries, and damping and tension 
terms adding complexity to those entries.  
This model can also be extended easily to 
interconnected systems (Yang, 1994), lending 
support to its use for cable-harnessed 
structures.   

The beam parameters used in the three 
models include density (rho), area (A), 
modulus of elasticity (E), moment of inertia 
(I) and modulus of rigidity (G).  Each of these 
could be measured or calculated using the rule 
of mixtures to describe the copper wire in a 
matrix of the jacketing material, but the rule of 
mixtures gives an upper and lower bound, not 
an exact value. These calculations were 
performed and used and gave a range of 
frequencies that bounded the experimental 
data collected.  Thus, it was decided that using 
a statistical approach on the cable data to 
determine the cable parameters would likely 
lead to a better understanding of the cable 
properties.  The interaction between the 
twisted wires, shielding material, jacketing 
and insulation material, and cable layers could 
not be easily described by a simple equation. 
 

Experimentation 
 

Since little research has been done on 
space flight cables specifically, it was 
important to set up the test fixture in a way 
that would both mimic the model and reality.  
Cable ties and TC105 tabs were used to attach 
the cables to the test fixture and the excitation 
method to the cable.  This is the same 

attachment method used on many spacecraft 
for cable management. 

A load cell was attached to the cable to 
measure the input force from the modal shaker 
and a laser vibrometer was set up opposite the 
shaker to measure the dynamic response of the 
cable.  Figure 1 shows the test set up.  The 
shaker is suspended to prevent vibration from 
traveling through the inertial table, and the 
cable is attached to the test fixture with TC105 
tabs and cable ties.  The shaker connects to the 
cable via a tensioned string that ends in a 
screw end that connects to the load cell 
attached to the cable.  

 

 
Figure 1. Test set up for space flight cable test. 
 
 Initial cable testing was intended to 
determine what aspects of the testing would 
need to be carefully controlled.  A single 
section of cable was used to test different 
excitation methods, the effect of the length 
and tension of the excitation string, tension in 
the cable, cable orientation, and different 
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types of cable ties fastened to either tight or 
loose configurations. 

The first round of testing used a single 
section of helically twisted 1 by 18 cable 
made of M27500 wire, tie-laced every 4-6” 
and overwrapped with Kapton tape, as is 
typical for space flight cables.  Figure 2 shows 
the cable used for experimental testing.     

Figure 2. 1 by 18 space flight cable used for 
experimental testing. 
    
 To ensure comparability as different 
cables were tested, a “standard run” was 
developed based on observations from the 
initial experiments.  The standard run was a 
cable length of 0.254 m with two buffer zones 
of 0.203 m on either side to reduce end 
effects, all secured with tight cable ties and 
TC105 tabs.  The cable tension was 8.9 N, and 
tight TyRap cable ties were used.  White noise 
excited the cable via a tensioned string 
attached to the shaker at 0.24 m away at an 
amplitude of 0.3 volts.  A low-pass filter at 
5kHz was applied and the frequency range of 
interest was 0 to 250 Hz.   
 The first section of cable was tested in 
a standard run 14 times, removed from the test 
fixture and reattached each time.  Additional 
sections from the same cable were tested and 
compared as well.  Full laser scans of the 
cable test sections were conducted on each 
day of testing so that the mode shapes could 
be identified and visualized. 
  

Results 
 
 The initial cable testing showed clear 
results for what factors needed to be 
controlled.  Cable tension, zip tie tightness, 
cable orientation in the test fixture, and 
differences in the cable sections all had large 
effects on the response, while excitation 
method, excitation string length and tension, 
and zip tie type had little to no effect. 

The cables tested had a first natural 
frequency around 55 Hz and a second natural 
frequency around 175 Hz, with damping ratios 
of 2.94% and 3.18% respectively.  Figure 3 
shows the first mode shape from a full test 
section scan; it is clear that the cable is 
forming an arc typical of the first mode shape.  

Figure 3. First mode shape of cable test 
section; node at center and anti-nodes at ends. 

 
Figure 4 shows the frequency response 

for 14 standard test runs of a single section of 
1 by 18 cable.  The first natural transverse 
frequency, indicated by the largest peak 
around 55 Hz, shows good agreement, while 
the second natural transverse frequency 
around 175 Hz shows more variation.  
Combination modes around 90 Hz that may 
include torsional and longitudinal vibration 
and mode interaction are much less 
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predictable, but also have much smaller 
amplitudes and are therefore less likely to 
cause structural failure due to large amplitude.  
Figure 5 shows the experimental data for 
multiple runs of five different sections of the 
same 1 by 18 cable.  It is clear that there is 
some variation in the frequency response even 
for the same type of cable, which indicates 
that a statistical analysis could be a good 
approach. 

   

 
Figure 4. Frequency response of multiple test 
runs of the same section of the same 1 by 18 
cable. 

 
Figure 5. Frequency response of five different 
sections of the same 1 by 18 cable. 
 

The models were run with properties 
of solid copper, solid Tefzel jacketing 

material, and the calculated mixtures based on 
the fractional area of each component.  The 
resulting frequencies did bound the 
experimental results.  Undamped models were 
used as a baseline.   

 
Table 1. Values used for undamped DTFM 
models yielding minimum frequency bounds, 
calculated using the rule of mixtures for 
copper wires and shielding in a matrix of 
Tefzel (ETFE) 
Property Value Units 
Density, rho 2.547 E 3 kg/m3 
Area, A 7.369 E -5 m2 
Modulus of 
Elasticity, E 

6.972 E 8 Pa 

Moment of 
Inertia, I 

8.935 E -10 m4 

Modulus of 
Rigidity, G 

1.205 E 8 Pa 

Tension, T 8.89 N 
Length, L 0.254 m 
 

With values shown in Table 1, the first 
natural frequency from the Euler-Bernoulli 
beam DTFM model was 46.38 Hz, and the 
shear model calculated 41.99 Hz.  By 
adjusting the values in Table 1 to the other end 
of the rule of mixtures spectrum, first 
frequency values of 81.8 Hz and 74.5 Hz were 
obtained for the Euler-Bernoulli and shear 
beam models, respectively.  The shear beam 
model values of 41.99 Hz and 74.5 Hz 
certainly bound the experimentally determined 
first frequency of 55Hz.  The second natural 
frequency was bounded by 171 and 303 Hz in 
the shear beam model, which also contains the 
experimentally determined second mode of 
175 Hz.  Table 2 summarizes the model 
results and compares the experimental 
frequencies.  Torsional frequencies were 
possible at 80-90 Hz a location of activity in 
the frequency response function. 
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Table 2. Summary of model results and 
experimental comparison 

 
First Transverse Frequency 

 
Lower Bound Upper Bound 

E-B 46.83 Hz 81.8 Hz 
Shear 41.99 Hz 74.5 Hz 

Experimental 54.3 Hz 

 
Second Transverse Frequency 

 
Lower Bound Upper Bound 

E-B 179.49 Hz 316.7 Hz 
Shear 171.3 Hz 309.3 Hz 

Experimental 175 Hz 
 
The calculation of the cable properties 

based on material assumptions and 
geometrical measurements is vague at best, so 
the bounding of the experimental data with the 
model results is a good indication that the 
property values are in the correct range.  It is 
also noteworthy that the second natural 
frequency falls within the shear beam model 
range, but not the Euler-Bernoulli range, 
lending support to the use of the shear beam 
model.  The experimental frequencies being 
on the low edge of the model range is 
significant; adding damping terms should 
further reduce the natural frequencies found 
by the models, keeping the experimental data 
well within the model range.  The next step 
will be refining these property values to more 
closely match  equivalent beam properties, 
and then adding damping terms to mimic the 
damping mechanisms that are physically 
acting on and in the cable.  Ideally, 
experimental testing will validate the 
calculation methods used for the 
determination of the properties used to model 
the non-isotropic, non-homogenous cable as 
an isotropic, homogenous beam.  A statistical 
analysis of the experimental data should be 
performed due to the variation in the data for 
different sections of the same cable.   

 

Conclusions and Future Work 
 

   The distributed transfer function models 
incorporate shear effects and damping, and are 
able to bound the natural frequencies of the 
tested space flight cable accurately for upper 
and lower bounds of cable parameters 
calculated simply by measuring the cable and 
making some material assumptions.  More 
research is necessary to incorporate the cable 
properties more exactly in a way that reflects 
the modeling of the cable as an isotropic and 
homogenous beam.    

In addition, investigation of the 
inclusion  of damping in a variety of forms 
(building off the work of Spak, Agnes & 
Inman, 2013) must continue, with a goal of 
determining how to incorporate damping to 
successfully reflect the physical damping 
characteristics.  Once cable properties are 
determined and the damping mechanisms 
identified and incorporated into the models, a 
reasonable cable model will result which can 
be used in DTFM models for a cabled-beam 
system.   
    The author looks forward to 
incorporating these cable models into cable-
harnessed beam models for further 
development. 
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