
Dawn Orbit Determination Team: 
Trajectory and Gravity Prediction 

Performance During Vesta Science Phases. 

23rd AAS/AIAA Spaceflight Mechanics Meeting 

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. 

Brian Kennedy* 
Matt Abrahamson* 
Alessandro Ardito** 
Dongsuk Han* 
Robert Haw* 
Nicholas Mastrodemos* 
Sumita Nandi* 
Ryan Park* 
Brian Rush* 
Drew Vaughan* 

*Jet Propulsion Laboratory/California Institute of Technology 
**ARPSOFT s.r.l. 

MacintoshHD:Users:mdrayman:Dawn:Outreach:Talks:Files_for_talks:Vesta_animations:Vesta_ops.app


BMK- 2 23rd AAS/AIAA SFM 

D
aw

n 
Agenda 

• Overview 
• Trajectory Prediction 

– Approach to Vesta 
– Survey and the High-altitude Mapping orbits 
– Low-altitude Mapping orbit 

• Gravity Prediction 
– Designing Survey 
– Designing the High-altitude orbit 
– Designing the Low-altitude orbit 
– How the predictions stack up 

• Concluding remarks and the Ceres mission 
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Spacecraft 

Unbalanced RCS thruster 
configuration generates perturbing 
delta-V in  
SC +X, -X and +Z directions only 
(no delta-V along SC Y-axis) 

SC +Z axis 

SC +X axis SC +Y axis 

All science instrument 
boresights along SC +Z 

+z 

+x 

-x 
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Dawn’s first target:  Vesta 

• The asteroid Vesta is a massive, asymmetrical, 
highly oblate asteroid, located in the main 
asteroid belt. 
– Orbital period: 3.63 years 
– Rotational rate: 5.342 hours 
– GM: 17.28838 km3/sec2  

 

Image credit: dawn.jpl.nasa.gov 
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Mission Trajectory 
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Science phases 

Phase Distance from 
Vesta 

Orbit period Dates of phase 

Approach 1,800,000 km – 
3000 km 

N/A April, 2011 – August 
2nd, 2011 

Rotational Characterizations 
(RC1-3) 

6000 km down to 
4000 km 

N/A Late July, 2011 

Survey 3000 km 2.5 days August, 2011 

High Altitude Mapping Orbit 
(HAMO) 

950 km 12 hours October, 2011 

Low Altitude Mapping Orbit 
(LAMO) 

47 5km 4 hours December 2011 –May, 
2012 

High Altitude Mapping Orbit-2 
(HAMO-2) 

950 km 12 hours June, 2012 – July, 
2012 
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Approach to Science polar orbits 
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Trajectory Predictions 

• During Vesta operations, the OD team provided trajectory 
predictions to the spacecraft team to direct pointing of science 
instruments at Vesta. 

• Key forces: 
– Low thrust from IPS 
– Delta-V from RCS during RWA momentum desaturation 
– Gravitational pull from Vesta (GM and harmonics) 

• During the Approach phase, the driver for pointing 
performance was the VIR instrument. 
– VIR had narrow IR slit scans that were tied to the OD team’s 

predictive capability. 
• During Survey, HAMO and HAMO-2, the pointing updates 

were needed to meet 2º, 1º, and 0.5º FC pointing 
requirements, respectively. 

• During LAMO, the driver for pointing was the ACS. 
– ACS team was concerned with gravity gradient torque. 
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Approach pointing 

• There were 8 VIR observations performed in Approach. 
• Pointing performance was complicated by delivery errors due to IPS 

low thrust arcs, and relatively sparse communication passes used for 
orbit determination and on-board ephemeris update.   

• In some cases, the best ephemeris had two thrust-arcs of error built 
in before it was first used in controlling the pointing to Vesta.  This 
error could be quite large for thrust arcs that lasted a week. 
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Approach Pointing 

• VIR scan widths were based on 2-sigma pointing capabilities 
assuming latest available ephemeris was onboard. 

• 1-sigma pointing errors only occurred twice, and 2-sigma pointing 
errors never occurred. 
Date of VIR 
observation 

  

Distance to Vesta 
(km) 

Predicted pointing 
using ephemeris 

from thrust 
sequence design 

(mrad, 1-) 

Predicted pointing 
using ephemeris 

from late-as-
possible update 

(mrad, 1-) 

Date of DCO for 
late update 

Actual pointing 
error (mrad) 

5/10/2011 1,018,000 1.46 0.29 4/27/2011 0.39 

6/8/2011 363,000 2.38 0.84 6/1/2011 0.33 

6/30/2011 102,000 2.59 2.59 6/24/2011 0.56 

7/9/2011 42,000 14.22 4.61 6/30/2011 3.44 

7/18/2011 12,400 8.34 8.34 7/13/2011 9.35 

7/23/2011 5,600 77.03 18.70 7/19/2011 1.02 

7/31/2011 4,400 187.70 6.34 7/24/2011 2.58 

8/4/2011 3,000 335.59 39.8 7/28/2011 7.89 
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Approach Pointing 
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Survey Pointing 

• Survey pointing performance was unremarkable, and the 
2º pointing requirement was easily met with one update 
over one month. 
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HAMO and HAMO-2 Pointing 

• HAMO pointing performance was required to be 1º. 
• For HAMO-2, this was tightened to 0.5º to reduce risk of 

opening up large gaps in the interlocking image coverage 
provided by the 10-orbit, 5-day repeat groundtrack. 
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HAMO and HAMO-2 pointing 
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Gravity Gradients at LAMO 

• The key concern at the LAMO altitude was the effect of 
gravity gradient torque.  
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Error feedbacks in LAMO 

• Feedback caused by trajectory errors could lead to a 
build up of further error due to torque build up and desat 
execution error. 
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• Effects of ephemeris error on gravity gradient torque were studied assuming 1 
desat/24 hours. 

• 1 cm/s desat errors were to be avoided, since these can possibly contribute 0.85º of 
additional pointing error in five days. 

• An update criteria of 0.4º was used to support the operational desat frequency of 1 
desat/3 days. 
 

LAMO Pointing 
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Oblateness at LAMO altitude 

• Interestingly, the Vesta oblateness can also be a source of gradient 
torque, because the direction of the net pull of Vesta gravity is often 
> 2º from the direction to the assumed Vesta Center/GM. 

• Fortunately, while this presents an obvious time varying angular bias, 
this does not present a persistant torque bias. 
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LAMO pointing  

Date Reason that pointing error exceeded 0.4º 

12/17/2011 Team still finishing transition from HAMO-to-LAMO transfer and had not yet settled into LAMO operations 
schedule 

1/19/2012 Safing event on January 14th 

1/31/2012 Large desat occurred on January 28th, along with execution error from IPS OMM 

3/21/2012 Large desat on March 17th 

3/29/2012 Large desat on March 24th 

4/5/2012 On-board ephemeris lacked appropriate attitude model during OMM due to OD team procedural error (identified 
and corrected) 

4/19/2012 Large desat on April 14th 
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Gradient torque 

• Following LAMO, during the transfer to HAMO-2, there was one instance where 
gradient torque was an issue.   

• An average 1.5º pointing error during a quiet three-day coast in the Vesta resonance 
resulted in a large torque build up.   

– The wheel speeds during the turn to Earth were noteworthy.  

• This was understood as being an error in the desat placement requirements. 
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Gravity Predictions 

• During Vesta operations, the OD team provided three 
estimates of the Vesta gravity to the Mission Design 
team. 

• For the Survey orbit design work that began on 7/21, the 
OD team delivered an estimated GM, but an assumed an 
8x8 field based on homogenous shape models 
established by Hubble imagery. 

• For the HAMO orbit design work that began on 8/7, the 
OD team delivered an estimated GM and an estimated 
field. 

• For the LAMO orbit design work that began on 10/17, the 
OD team delivered an estimated GM and an estimated 
field. 
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Gravity for Survey Design 

• Performance of the Survey field is assessed by simply comparing 
Survey-altitude propagations of the design field and the OD team’s 
best estimate of the field from LAMO. 

• Even using a pre-Vesta gravity field, the estimate for GM from a 
higher altitude was enough to provide a Survey design that would 
only be in error by 7 km over one month. 
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Gravity for HAMO Design 

• Performance of the HAMO design field is assessed by simply 
comparing HAMO-altitude propagations of the design field and the 
OD team’s best estimate of the field from LAMO. 

• The estimate of GM and the gravity field from Survey altitude 
provided a good estimate for gravity at the HAMO altitude, with only 
a 0.6 km error over one month. 
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Gravity for LAMO Design 

• Performance of the LAMO design field is first assessed by simply comparing LAMO-
altitude propagations of the design field and the OD team’s best estimate of the field 
from LAMO. 

• The estimate of GM and the gravity field from the HAMO altitude provided a good field 
estimate for gravity at the LAMO altitude, with only ~10 km error over four months. 

• Also shown here is the notable performance of the field estimated from the Survey 
altitude when propagated at LAMO altitudes. 
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Pre-Vesta gravity field at LAMO 

• If the Survey design field were applied at LAMO, the 
predictions would be out of phase quite soon, with drifts 
of up to 90º inclination and 180º in node.   
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Statistical agreement of the fields 

• In addition to examining propagation consistency, the performance of 
the filter error models is also investigated.   

• Differences between the LAMO design field parameters and OD’s 
best field estimate were mostly consistent, but were multi-sigma in 
GM, J[3], S[2][2] and C[3][3]. 

• Primarily due to optical data in the solution used to provide the 
LAMO design field  When only radio data is used, the field 
differences are statistically consistent.  
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Assumed uncertainty of field 

• Before starting the transfer from HAMO into a LAMO, the Dawn Navigation 
Team performs Monte Carlo studies to verify the feasibility of both the LAMO 
and the transfer to it.   

• Below are propagations based on a random 1% of the sampled fields from a 
Monte Carlo run that assumed HAMO-altitude knowledge for the true field 
injection.   

• Based on how poorly they compare with the previously shown performance 
of the as-estimated LAMO design field, the OD covariances going into the 
Monte Carlo studies might be quite conservative. 
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Concluding Remarks 

• At Vesta, the pointing performance based on trajectory 
prediction was successful in all mission phases. 

• At Ceres, OD will still recommend 2-sigma performance 
of the trajectory predictions for VIR scan sizing. 

• Gradient torque will be less of a factor with the higher 
orbit radii at Ceres, but will still be studied. 

• Due to recent failure of a second RWA, lessons learned 
from Vesta might be applied differently at Ceres. 

• Gravity fields estimated from high altitudes predict low-
altitude trajectories much better than expected. 

• Gravity field covariances used for Vesta studies seem 
overly conservative, and we seek to better understand 
this in order to take advantage of it for Ceres studies. 
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