Starshade Earth Characterizer with SALSO

N. Jeremy Kasdin, Robert Vanderbei, Edwin Turner of Princeton University
Doug Lisman, Stuart Shaklan, Eric Cady, Mark Thomson of JPL, Caltech
Bruce Macintosh, Dmitry Savransky of Lawrence Livermore National Lab
Margaret Turnbull of Global Sciences Institute
Remi Soummer of Space Telescope Science Institute

February 6, 2013

Jet Propulsion Laboratory, California Institute of Technology
Copyright 2013: California Institute of Technology
Introduction

- SEC is an exoplanet experiment to find and characterize earth analogs, as well as larger outer planets and debris disks.
- SEC is compatible with other experiments making SALSO a robust mission satisfying multiple objectives.
Mission Concept

Earth-Sun-L2 Halo Orbit

Occulter launches with SALSO on EELV and separates on-orbit

Occulter holds formation with SALSO during observations to create a dark shadow

45,000 ± 1,000 km

S-Band 2-way Com < 0.005 HZ control loop

32m starshade

Instrument senses occulter position with IR cameras and radios error signal

Occulter maneuvers to next target with Solar Electric Propulsion

Formation Flying at Earth-Sun L2 is an innovative use of NASA capabilities

02/06/2013

* Starshade Earth Characterizer with SALSO
Measurement Performance – Search Mode

SEC can photometrically detect Ozone with short exposures
Measurement Performance – Characterization Mode

120 mas IWA

500-1100 nm Bandpass

22,500 km

1 x 10^{-10}
Starlight suppression

4 x 10^{-11}
planet contrast detection threshold

Unlimited OWA

R70 Spectral Resolution using 20% Observatory time

SEC can ????

02/06/2013

* Starshade Earth Characterizer with SALSO
Science Performance - Detections

- Detect Earth analogs in habitable zones of 100 F,G,K stars
- Follow up known giant exoplanets, beyond IWA
- Obtain “family portraits” of complete planetary systems
- Reveal structure of inner debris disks
- Explain planet simulations
\(R_A \approx 70, \lambda=250-550 \text{ nm:} \)
- oxygen
- ozone
- water
- Rayleigh scattering
- plants, continents?

\(\lambda=500-1100 \text{ nm:} \)
- strong water bands
- carbon dioxide
- methane (young Earth)
Instrumentation with Telescope

• Limited Instrumentation, leaving ample resources for other experiments
 - Total mass < 120 kg
 - Total power < 120 W
 - Dimensions shown to right

• No telescope modification required

• NUV camera is photometric and not diffraction limited

• Radio system may be integrated with spacecraft
Occulter System Design

- Compact stowed volume enables a joint launch with SALSO in std. 5 m fairings
- 2,000 kg total mass leaves ample mass to rest of system (e.g., Atlas 551 delivers 6,400 kg)
- Spins (~ 5 min. period) to relax tolerancing
- SEP for efficient retargeting performance
- Power from thin-film PV cells, integrated with starshade blankets

Add cutaway view of occulter?
Technology Readiness

Formation Flying simulations indicate low BW controller

Small-scale optical testing demo's 3E-10 contrast

Larger-scale optical testing to demo 1E-10 contrast *

Full-scale (6m) TDEM-1 petal

3/5th scale TDEM-2 partial system

Full-scale full-system prototype*

Demonstrated Mfr. tolerances in 2012

Demo deploy tolerances in 2013

Establish TRL-6 by 2017

Addresses engineering challenges typical of deployable antenna systems * Not yet funded

Modeling demo's large stability margins

Optical Edge Development

SEC is highly “doable” experiment with a clear and limited risk path to TRL-6 and launch readiness by 2022

02/06/2013

Starshade Earth Characterizer with SALSO
Conclusions

- SEC is an attractive option for SALSO, as it: *(more pithy statement !)*
 - Addresses a major NASA strategic goal, much earlier than otherwise possible
 - Makes innovative use of NASA capabilities
 - Is highly compatible with other experiments to address multiple objectives
 - Is very doable and offers controllable cost and early retirement of risk
 - Innovative use of processes or partnership arrangements ???