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Intro 

• Many missions that are planned or currently in development 
require sub 20 K cryocoolers 
• Flight cryocoolers (to ~6 K)  have been converging over the 
past decade to two classes of pulse tube: 

-Single stage pulse tube (typical low temp ~55 K, as low as 35 K) 
-Multi stage pulse tube (lowest temps ~ 3 K) 

• Cryocoolers to ~35 K are readily available from industry, lower 
temperature coolers have limited availability and are one-offs and 
expensive. 
• The efficiency of sub 20 K cryocoolers is limited by available 
regenerator designs and materials. 

-We’re focusing on developing capability to design and build pulse tube 
stages in the 4 to 15 K range 
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Applications and Requirements 

• Earth Science 
- Detector temperatures as low as 4 K 
- Mission lifetimes 2-3 years (longer desired) 

• Astrophysics 
- Temperatures as low as 50 mK 
- ~4 K stage would provide precooling for the additional stages (e.g. ADR) 
- Some applications with 4 to 10 K as the coldest stage  
- Mission lifetimes 1 to 3 years (up to 10 years for flagship missions) 

• Planetary 
- Temperatures to 10 K 
- Lifetime 2-3 years 

• Cost is a major driver for all categories 
- Cost-capped competed missions can’t pay for development 
- TRL 5-6 is typically required prior to mission selection 
- Small efficiency improvements can lead to significant cost savings 
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3 

Focus on Optimized Regenerator Development 
• Pulse tubes are typically built with 

homogeneous regenerators (e.g. Pb pellets, steel 
screens).   

• At higher temperatures (T ≥ 35 K), heat 
capacity variations of the regenerator with 
temperature do not significantly limit 
performance.   

• At lower temperatures (T < 20K), regenerator 
materials are strongly peaked and limit 
performance over the range of the regenerator 

- Low temperature regenerator materials are typically 
brittle intermetallics and hard to work into geometries 
other than spheres 

• We’re investigating alternative regenerator 
designs: 

- Heterogeneous (layered) regenerators 
- ErPr felts and screens 
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Cooler Modeling and Analysis 

• Cooler Design Process 
- Cooler design process used the previously mentioned analysis tools and follows the  

“Approximate Design Method for Single Stage Pulse Tube Refrigerators” (Pfotenhauer 
et al.) as described below: 

• Specify Cooler Lift and Temperatures 
• Find optimal Regenerator Geometry and operating 

parameters using Regen 
• Use equations and the Optimal Regenerator Geometry 

 and Operating parameters to size pulse tube 
• Size inertance tube and reservoir to provide 

 appropriate phase shift using Schunk’s Model. 
• Use Sage to evaluate performance of resulting  

geometry (ongoing) 
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Cooler Modeling and Analysis 

• Modeling Tools 
 

- Regen 3.3 
• A Fortran program that models helium flow and heat 

transfer in regenerators of the type used in cryocoolers. 
Developed by NIST and widely used in Industry and 
Academia 

• Additional matlab code written to allow multiple Regen 
cases to be run  in parallel (allows 1000’s of cases to be 
run in short order) 
 

- Inertance Tube Modeling 
• A matlab implementation  of the distributed component 

model described by Schunk et al. in “Experimental  
Investigation and Modeling of Inertance Tubes” is used 
 to predict inertance tube phase shift. 
 
 

 
 

- SAGE 8.0 
• SAGE is used to model overall cooler performance. 

SAGE has been used by industry and universities 
throughout world to models all types of cryocoolers. 
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• HX bodies include flow channels for pressure sensors on both sides of flow 

• Currently investigating Kulite piezoelectric sensors: similar to 
Endevco, certified to 77 K (and we have approaches for using with 
much colder components);  

• Plan to calibrate as mass flow sensors 
• Pressure sensors yield relative phase of flow at different locations, 

which is vital for investigating phase shift across regenerator and phase 
shifter 

Cooler Development: Heat exchangers & Pressure sensors 

1 cm 
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• Components are assembled using modified CF flanges vacuum-brazed to 
each, with teflon gaskets for sealing (to be tested: metal gaskets are fallback) 

• All fabrication techniques are available in-house: major advantage in a development phase 
• Sequence of fabrication matters: some materials cannot tolerate brazing temperature 
• Components can easily be interchanged 
• Minor leaks can be tolerated: this is not a UHV device yet 

 
• For flight assembly, expect to replace the CF flanges with weldable design:  

• possibly orbital-tube or other arc method 
• maybe laser, or e-beam (not available in-house so far as I know) 

Assembly, with path to flight designs 
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• 24” vacuum chamber with 2-
stage GM cryocooler 

- Capable of precooling to <20 K 
for 10 K stage development, 
component testing 

- Water chiller & circulator (not 
shown) for higher-T, higher-P 
operation 

• NI data collection modules for 
dynamic pressure sensors, 
LakeShore and Cryocon 
temperature controllers, other 
standard equipment 

• Q-drive 2S132 and 2S175 
available 
 

Test facility 
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S70 steel Cold Head in Chamber 

• Cold head AC and WHX attached to 2nd stage of GM cooler 
• Gas flow precooled by 1st stage of GM cooler  
• Radiation shield at ~60 K (not shown) 
• Calibrated thermal straps measure heat flux 
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First Frost 
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Experimental Results – Steel Spheres 

Aftercooler 

Warm HX 

Expansion Volume 

Cold HX 

• Q-drive 132 PWG 
• 60 Hz 
• 2 MPa 
• Steel Regenerator, 70 µm spheres 

T(
K

) 
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Conclusions & Acknowledgement 

• We’re making progress toward development of a sub-20 K 
pulse tube stage.   
- Initial build using low-cost 70 micron steel spheres in the regenerator 

provides expected cooling 
- We have a modeled design for a 15 K cooler that should be running 

this month 

• We have near term plans to work on alternative regenerator 
designs and modeling of those designs 
- Heterogeneous regenerators 
- ErPr felt and screens 
- Novel construction approaches 
 

 

This work was performed at the California Institute of Technology, Jet Propulsion Laboratory, under contract 
with the National Aeronautics and Space Administration 
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