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Single Cooper-pair Box (SCB)




The Quantum Capacitance Detector
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® Radiation coupled by an antenna

breaks Cooper pairs in the
reservoir (absorber)

* Quasiparticles tunnel onto the
island with a rate I'; proportional to
the quasiparticle density in the
reservoir

* Quasiparticles tunnel out of the
island with a rate I, independent
of the number of quasiparticles in
the reservoir

* At steady state the probability of
a quasiparticle being present in the
island is given by
Po(Ngp)=Tin/(Iin+Iout,)

* The resulting change in the
average capacitance will be C,=

(4E(/E,)(C2/C )Po(Ngp)
* This change in capacitance will

produce a phase shift 560~2C,
/(COOZOCCZ)
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Simulated response

¢ SCB capacitance x gate
voltage (in units of
Cooper Pair charge) for
different coupled optical
signal power

$21(dB)
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® transmission through
feedline x gate voltage (in
units of Cooper Pair
charge) for different
coupled optical signal
power



Theoretical Sensitivity vs. Signal Power
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e Detector is background limited over a wide range of operation




|\ Antenna

rrrrr
+ [
¢

Only center device

llluminated by lens.

Each device has a slightly
Different resonance frequency.
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Fresnel lens array

Lens array made by Dan Wilson using an electron beam lithography technique
developed by Paul Maker, Dan Wilson and Rich Muller at JPL




Experimental Setup @

—— e — Aperture
ZZZZZZZZZZZZZZZZZIZZZZZZZZZZZZZZZZZZZZZZZ 2 mm diameter
.......................................... 1.5THz band pass filter

10% band

3THz low pass filter
0.03" teflon

Blackbody source

Bock Black
Radiation absorber

- 4K - Still Temp. MC Temp.

* Black body source and filters provide 1.5THz radiation from 4.2 — 40
K. Bock Black absorbs stray 4K radiation



@ Response x gate voltage as a function of black body @
source temperature
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Noise measurements
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Quadrature Signal(V)
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Measurements of Response versus optical power for various

1.4

gate sweep rates
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Aperture 500um

Diffraction causes
illumination to be about the
same for all pixels

Response similar from pixel
to pixel

What causes sweep rate
dependence?



Sweep rate dependence model

Recombination




@ Sweep rate dependence model @

Detailed balance equation

_ 2
dN,, /dt=nPs/A—RN_ (N, -1)-T, N, +T . =nP;/A—(R+K)N, +RN_ +T,

Nqgp = number of quasiparticles

A = superconducting gap energy

P= optical signal power

n = conversion efficiency from photon energy to quasiparticles ~ 0.57
R=recombination rate

[in= tunneling rate from absorber to island = KNqgp

[eff= effective tunneling rate from island to absorber

Model for leff -> T, r; = /T2, + SR?

At the end of each sweep quasiparticles are dumped back into reservoir. If the
sweep rate (SR) is faster than the intrinsic tunneling out time lout, then I',¢+~ SR.

If SR is much slower, I'g ¢~ Ty



@ Sweep rate dependence

Steady state solution

N :(R+\/R2+4(77PS /A+T  NR+K) | 2(R+K)

PR is the photon arrival rate, hu the photon energy, A the absorber superconducting gate

Response is a single value function of Ngp

C=ar /(T +T )=A/(1+ KN /T )

A is a constant (depending on the electronics)
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Sweep rate dependence = calibration of photon arrival rate!
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By comparing the response at low power and high sweep rate
with the same response at high power and low sweep rate we

arrive at Ps=I;A/n
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@ NEP measured with power calibration @

Photon shot noise limited!
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Conclusion

* Achieved photon shot noise limited NEP at 200pm wavelength in a
5x5 array
* Novel way of calibrating absorbed optical power
* Fresnel lenses working
* Introduced special filters to cut down noise through coaxes
*Next
» Redesign antenna for better efficiency
* Tweak Fresnel lens fabrication for better lens profile



NEP(W/Hz1/2)
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