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Surface damage and surface trapping cause instability and failure 

Low interface trap density   Surface potential is unstable 
High interface trap density  Fermi level is pinned midgap 

Fermi level 
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Electron trapping leads to transient instabilities 

Positive charge  Depletion      Illumination     Transient band flattening 
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Far UV photons create hot 
carriers near the Si surface… 
• Hot carriers are captured by  

interface defects; 
• Hydrogen is released 
• Traps are formed. 
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Silicon interface is populated by 
hydrogen… 
• Hydrogen passivates traps formed 

by dangling bonds in the oxide; 
• Hydrogen is weakly bound and 

vulnerable to radiation damage. 
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Deep and far UV instabilities and mitigations: 
• Thin oxides        reduce cross section 
• Oxy-Nitrides       reduce damage 



Superlattice doping 

“Surface Passivation by Quantum Exclusion Using Multiple Layers,”  
Michael E. Hoenk, U.S. Patent 8,395,243, issued March 12, 2013. 

Multiple 2D-doped layers 
• Tunnel barrier isolates surface 

traps 
• Electron quantum confinement & 

transport suppresses surface 
trapping 

• Hole confinement & transport 
increases effective bandgap and 
conductivity  

Insensitive to interface defects 
• Excellent stability, robustness, 

conductivity, dark current.  
• Nearly 100% internal QE. 



Veeco 8-inch Silicon MBE at JPL’s Microdevices Lab 

8-inch CMOS wafer during MBE growth at 
JPL’s Microdevices Lab 

See Shouleh Nikzad’s talk 







 Traps decrease 
conductivity 

 Trap density ~ 1014cm-2 



Normalized Spatial Response following 2.1 B pulses 

Exposure slit position on sensor 

 >2 Billion laser pulses at full saturation 

 No measureable change (within +1%) 

 Estimated Lifetime > 10B laser pulses.  

 Internal QE ~100% (excluding Quantum 

Yield) 

 No blooming and no image memory at 

1000 fps. 



 Pulsed 263 nm laser up to x257 camera 
saturations 

 QE = 64% with AR-coated sensor – 
28nm Al2O3 

 QE and dark current stable to 
maximum tested dose (3.1 kJ/cm2) 

 No blooming and no image 
memory were present even at the 
high saturation levels.  

 High modulation transfer function 
(MTF) 
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DUV damaged surface, σsurface ~ 1014 cm-2 

• ρ3D = 1019 cm-3  Depletion depth ~100 nm 
• ρ3D = 1021 cm-3  Depletion depth ~1 nm 
• 3D doping limit  <2.5x1020cm-3 

Poisson’s equation… Charge neutrality 



DxwidthDipole 2_ =

Poisson’s equation… 

Near surface potential is dominated by doping-induced dipole… 

If x2D < 1nm… surface state density decreases significantly 

Integrate… 

Stable self-ordered surface phase, up to 0.5 monolayer (3x1014cm-2) 









“Surface Passivation by Quantum Exclusion Using Multiple Layers,”  
Michael E. Hoenk, U.S. Patent 8,395,243, issued March 12, 2013. 

Alacron Inc. BSI DUV camera 
with superlattice-doped, AR-
coated CMOS imaging array. 
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