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EXPLICIT LOW-THRUST GUIDANCE FOR REFERENCE ORBIT
TARGETING

Try Lam∗ and Firdaus E. Udwadia†

The problem of a low-thrust spacecraft controlled to a reference orbit is addressed
in this paper. A simple and explicit low-thrust guidance scheme with constrained
thrust magnitude is developed by combining the fundamental equations of motion
for constrained systems from analytical dynamics with a Lyapunov-based method.
Examples are given for a spacecraft controlled to a reference trajectory in the cir-
cular restricted three body problem.

EXTENDED ABSTRACT

The issue of controlling a spacecraft to a desired reference orbit has many applications. An
objective may be to maintain a particular periodic orbit, for example, in an unstable Halo orbit.
Another example may be to command back to a desired design reference trajectory after being
perturbed or placed into an incorrect orbit. A multitude of methods have been presented for the
low-thrust control of a spacecraft: some methods use feedback (linear or nonlinear) approaches
(References 1, 2, 3, and 4), and others use gradient based numerical optimization techniques (Ref-
erences 5, 6, and 7). More recently, the use of evolutionary algorithms and hybrids approaches have
been proposed (Reference 8 and 9). Many of the proposed approaches employ either linearized ap-
proximations of the dynamics or the controller, or have unstable tracking (or control) of the errors.
Thus, for systems with large perturbations or un-modeled external forces, or for states far from the
reference, many of these control approaches will not be adequate. This is especially true for systems
where the dynamics are highly unstable (i.e., orbits around the L1 and L2 points in the circular re-
stricted three body problem (CR3BP)), and constant control is required to maintain the spacecraft’s
trajectory.

In this paper, a closed form constraint-based method is developed that provides the control
force necessary to track a spacecraft to a reference orbit using the fundamental equations of mo-
tion combined with a Lyapunov-based approach. In analytical dynamics, the constraint-based
method using the fundamental equations of motion was originally used as a general approach of
obtaining the equations of motion of simple mechanical systems with kinematic constraints (Ref-
erences 10 and 11). Here we adopt the method to find the control force recquired to meet a set
of mission objectives, specifically, controlling the spacecraft to some reference orbit. In this paper
we give an example of a spacecraft controlled to an arbitrary reference trajectory and to a periodic
Halo orbit in the CR3BP. A mechanism for controlling the thrust magnitude to better model a “real”
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engine is also introduced, and a simple equation for the applied thrust direction to target a reference
trajectory is revealed.

In developing the guidance law necessary to control a spacecraft to a reference orbit we formulate
the control objectives as constraint(s). The behavior of the imposed constraint is one that will drive
the position and velocity differences between the spacecraft and the target orbit to zero. That is, we
want the spacecraft state q to approach a desired state qt over time, i.e., limt→∞ q(t) = qt(t).

The selected constraint which will achieve the above goal is

V̇ = −κV (1)

or
φ ≡ V̇ + κV = 0 (2)

where κ > 0 and V is a candidate Lyapunov function of the form

V =
a1
2

∆xT∆x +
a2
2

∆ẋT∆ẋ + a3∆xT∆ẋ (3)

or

V =
1

2

(
∆x ∆ẋ

)(a1 a3
a3 a2

)(
∆x
∆ẋ

)
(4)

where
∆x = (x− xt, y − yt, z − zt)T (5)

∆ẋ = (ẋ− ẋt, ẏ − ẏt, ż − żt)T (6)

and x, y, and z is the position of the spacecraft and ( )t is the position of the targeted reference
orbit tracked at some time, t. From Eq. (1) it is noted that with κ > 0 the Lyapunov function, V ,
exponentially approaches zero as a function of time, where κ is the decay constant.

In addition, Eq. (3) is positive definite if a1a2 > a23. If this is satisfied and if κ > 0, then V̇
in Eq. (1) is always negative definite, i.e., V̇ < 0, and thus, the function V has an asymptotically
stable solution ∆x = 0 and ∆ẋ = 0. Furthermore, V is radially unbounded, i.e., V → ∞ as
∆q →∞, where q is ∆x and/or ∆ẋ, thus, the proposed constraint is globally asymptotically stable
to the reference target. Therefore, the constraint proposed in Eqs. (2) and (3) will drive the position
and velocity differences between the spacecraft and its reference target trajectory to zero as time
progresses asymptotically, even when the initial conditions are very far apart. This paper refers to
this behavior as stable control, where the control will always take you to the reference target.

The explicit closed form control acceleration that will maintain a spacecraft to a reference orbit
is

ac = A+
(
−a1∆xT∆ẋ− a3∆ẋT∆ẋ−A (r̈− r̈t)− κV

)
(7)

where A and b are

A = a3∆xT + a2∆ẋT (8)

b = −a1∆xT∆ẋ− a3∆ẋT∆ẋ− κV + Ar̈t (9)
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and (9), V is the Lyapunov function described in Eq. (3). This simple explicit equation will
provide the necessary control acceleration needed by the spacecraft to maintain or track a partic-
ular reference orbit. This equation does not discriminate on the dynamical environment (2-body
problem, 3-body problem, n-body problem, etc.) and can track any reference orbit if the posi-
tion, velocity, and acceleration of the target is given. In addition, this guidance scheme is globally
asymptotically stable for κ > 0 and a1a2 > a23.

To better model a “real” thruster system on board a spacecraft we have implemented a simple
limitation to the applied control force, where the applied control force is limited to two operational
thrust levels: 0 (thrusters off) or acmax (thrusters on), where acmax is the maximum thrust acceleration
capability of the thrusters. The implementation of this switching criteria is accomplished in two
steps.

Step 1: Allowing the thrust level to be “on” if the magnitude of Eq. (7) is such that ac ≥ η amax,
where η is some constant. For example, if η = 0, then the thruster will be continuously “on”. If
η = 1, then the thruster will be “on” if the computed control acceleration such that ac ≥ amax.

Step 2: For each integration step compute the thrust direction by computing a value for κ such
that the magnitude ac in Eq. (7) is equal to the acceleration magnitude produced by the engine,
ac = aengine. Since A is a 1x3 matrix with linearly independent columns Eq. (7) can be written as

ac =
AT (b−Aa)

AAT
(10)

The value for κ can be explicitly computed using Eqs. (8), (9), and (10), and is found to be

κ =
1

V

(
aengine

√
AAT − a1∆xT∆ẋ− a3∆ẋT∆ẋ−A (r̈− r̈t)

)
(11)

After finding the κ in Eq. (11) the thrust direction and magnitude can now be solved computed
which will ensure that ac = aengine. In this fixed thrust magnitude formulation κ as an adaptive
term per integration step, but it is noted that the described guidance law still requires that that κ > 0.
Substituting Eq. (11) into Eq. (7), we have

ac = −aengineA
T

√
AAT

(12)

where A is from Eq. (8) and aengine is the available acceleration magnitude of the engine or thruster.

Equation (12) is the explicit closed form solution for fixed thrust magnitude control acceleration
which satisfies the constraint in Eq. (2). A caveat of using Eq. (12) is the assumption that the control
limitation of the engine has enough control authority to bring the spacecraft to the desire target.

Numerical simulations are performed for the Jupiter-Europa system in the CR3BP. The x-axis
is fixed and points from the barycenter of Jupiter and Europa toward Europa. The z-axis points
along Europas angular momentum vector with respect to Jupiter, and the y-axis completes the right-
handed coordinate system. The mass ratio used is µ1 = 2.52337464717194e-05. In this system
the transformations from normalized units to un-normalized units are DU = 670,900 km and TU =
48,822 seconds (orbit period of Europa around Jupiter is 3.551 days). Here we assume the applied
control acceleration is a continuous low-thrust system, where thrust magnitudes are allowed to vary.

In our example, the desired control is to match the position and velocity of the target reference
trajectory as described in the above sections. The initial states for the spacecraft and the reference
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trajectory in this example are listed in Table 1, where the target reference trajectory is on a trajectory
toward the L2 point, while the spacecraft trajectory is deviated slightly (369.58 km in position and
1.11 m/sec in velocity) from the reference trajectory. The state of the reference trajectory was
found by backward propagating the Halo orbit by t = 2P , where P = 3.0984224791541 TU.
This is to ensure that the reference orbit will approach the L2 Halo orbit from its stable manifold,
W s

L2−Halo(Reference 12). States are then forwardly propagated.

Table 1. Initial state of the reference target orbit and the spacecraft (S/C) orbit in normalized units.

rt 1.06674183675193 0.275238653754246 -0.0116349382699965
vt 0.0218965193245572 -0.160539673664387 0.00285062288048665

rS/C 1.06620846583355 0.275101034427369 -0.0116291208008615
vS/C 0.0218855710648949 -0.160459403827555 0.00284919756904641

Figure 1 shows both the uncontrolled trajectory (Figure 1a) and the controlled trajectory (Fig-
ure 1b) using the continuous applied acceleration described in Eq. (7). In Figure 1a we see the
spacecraft’s trajectory if uncontrolled. In this plot we note that the spacecraft will approach the L2
point then orbit around x ≈ 1, where Europa is located, and head towards the L1 point. Figure 1b
shows the controlled trajectory; the reference trajectory and the spacecraft trajectory are visually in-
distinguishable as they approaches the Halo orbit. The selected coefficients used in Eqs. (8) and (9)
are a1 = a2 = 1, a3 = 0.5, and κ = 0.7.

The applied control acceleration, Eq. (7), to control the spacecraft in Figure 1b is shown in Fig-
ure 2a. The differences in position, velocity, and Jacobian constant between the spacecraft and the
reference trajectory are shown in Figure 2b - 2d. We note desired decreases in differences in the
position, velocity, and the Jacobi Constant as time progress.

For the case of a fixed magnitude control accleration, Eq. (12), we set aengine = 1 mm/s2 (or
0.00355282111193919 DU/TU2) and a1 = a2 = 1, and a3 = 0.5. In this case, the controlled tra-
jectory plot is visually indistinguishable from Figure 1b and, thus, not plotted. However, Figure 3a
shows the applied thrust for a fixed control acceleration with η = 0, i.e., continuous thrusting. From
this figure we note that the black solid line (acceleration magnitude) is constant over the controlled
time period. The differences in position, velocity, and Jacobian constant between the spacecraft and
the reference trajectory for the fixed acceleration magnitude case are shown in Figure 3b-3d.
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Figure 1. Integrated spacecraft and reference trajectory for t = 2P for the un-
controlled spacecraft (a) and the controlled spacecraft (b). In both (a) and (b), the
reference target orbits are plotted, but is indistinguishable to the actual spacecraft
trajectory in (b).
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Figure 2. Applied control acceleration of the spacecraft (a), absolute differences in
the position (b), velocity (c), and Jacobian Constant (d) between the spacecraft and
the reference trajectory for a1 = a2 = 1, a3 = 0.5, and κ = 0.7.
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Figure 3. Applied control acceleration with fixed thrust acceleration (1 mm/s2 ≈
0.00344DU/TU2) of the spacecraft (a), absolute differences in the position (b), veloc-
ity (c), and Jacobian Constant (d) between the spacecraft and the reference trajectory
for a1 = a2 = 1, a3 = 0.5, and η = 0 (continuous thrusting).
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