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Background 
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Gas sensing 
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Earth 
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Planetary 
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Safety 

Credit: NASA 



Credit: Richard W. Pogge, Ohio state university 

Absorption spectroscopy basics 

Credit: David Sayres, Harvard 
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Laser spectroscopy basics 

Laser Detector Gas 

1980s 
Liquid helium-cooled lasers 
(1000kg) 

1990s 
Liquid nitrogen-cooled lasers 
(70 kg) 

2000s 
Thermoelectrically cooled 
lasers (0.1 kg) 
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Example application – Earth science 

Carnegie airborne observatory 

Credit: Carnegie institute of science 
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Earth 
science 



Example application – Planetary science 

Mars polar lander 

Mars science 
laboratory 

Credit: NASA 
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Planetary 
science 



Example application – Safety 

Carbon monoxide 
monitoring instrument 

Credit: NASA 
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Safety 



Ozone depletion 
• Chlorine compounds destroy ozone, but only at cold 

temperatures. 
• Water vapor in the stratosphere increases the threshold 

temperature, at which ozone destruction can take place.  
• Risk of thinner ozone layer not only at the poles, but also at 

lower latitudes where people, animals, and plants live. 
 

2013-04-04 Postdoc seminar – Carl Borgentun 10 

James G. Anderson et al., Science,  
337 (6096), 835-839, 2012. 

• Various explanations for high mixing 
ratios of water vapor, distinguishable 
by measuring water isotopologues. 



• Traditional absorption techniques are not sensitive enough 
for the simultaneous measurement of water and its less 
abundant isotopologues. 

• Jim Anderson’s group at Harvard are developing a cavity-
enhanced instrument. 

• A high-power laser source at the right wavelength is 
needed. 

• In this case: Right wavelength ~ 3777 cm-1 (2.65 µm) 
• In this case: High-power > 10 mW 

Need for more sensitive instrument 

Credit: NASA; Jim Anderson, Harvard 
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Laser design and 
fabrication 
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Two criteria: 
• Optical gain 
• Cavity 

 

Laser crash course 
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Active medium 

Cavity 

Pumping 

Mirror 

Output beam 



Molecular Beam Epitaxy 

Credit: JPL 
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Active region 

215 nm 

66 Å 



Processing 
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Etch ridge 

Insulate  
and contact 

Etch grating 



Single-mode emission 
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Grating 
• Distributed feedback (DFB) laser using a 

Bragg grating => single-mode emission. 
• Etched, i.e. non-metal => less loss. 
• Laterally coupled => no epitaxial re-

growth necessary. 

Credit: JPL 
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SEM pictures 

Credit: Cliff Frez 
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Coating, cleaving, and bonding 

Credit: Cliff Frez 
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Wavelength: 
2.0 – 3.5 µm 



Performance 
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Power characteristics 
• Output power at 35 mW @ 10C, 600 mA. 
• Still more than 20 mW @ 30C, 600 mA. 
• No sign of thermal roll-over. 
• Dips in LI curves are due to absorption of ambient water 

(feature, not a bug!). 
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Spectral performance 
Wavelength is tunable by temperature and/or drive current. 
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Reliability and life-time 
• Reliability and life-time test: devices submitted to elevated 

drive currents and mount temperatures. 
• Over 3000 hours of accumulated testing has been 

performed, without a single failure. 
• Peak wavenumber stabilizes after 100-200 hours. The 

change in peak wavenumber is less than 2 cm-1. The output 
power is not reduced. 
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• Lasers integrated into TO-3 
packages. 

• No significant degradation in 
performance noticed after 
packaging. 

Packaging 

Before After 
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Shape of output beam 

• Divergent and highly elliptical, 
normal for edge-emitters. 

• Divergence angles: ~ 110 and 40 
degrees. 
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Instrument aperture 

Instrument aperture 

Collimating the beam 
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Laser 

Laser 

Laser package 

Laser package 



Package with internal lens 

TO-3 header 
TEC 

Tilted, coated, sapphire window 
Black housing 
Coated lens (XYZ active alignment) 

Precision spacer 
Laser 

Cu submount 
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Next target: CH4 
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Initial results 
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• Hit target wavelength 
(3058 cm-1). 

• Increase in output power 
(6 mW vs 1.5 mW) 



Summary 

• Successfully delivered 2 laser modules emitting more than 
10 mW at 3777 cm-1 to Harvard for water detection. 
 

• Developing laser package complete with collimating optics. 
 

• Initial results show promising outlook for future methane 
detection missions like TLS. 

2013-04-04 Postdoc seminar – Carl Borgentun 30 



Acknowledgements 

Supervisor: 
Siamak Forouhar 

 
Colleagues: 

Cliff Frez, Ryan Briggs, Mahmood Bagheri 

2013-04-04 Postdoc seminar – Carl Borgentun 31 



Thanks for the attention! 
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