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CHARACTERISTICS OF QUASI-TERMINATOR ORBITS NEAR
PRIMITIVE BODIES

Stephen B. Broschart, Gregory Lantoine, and Daniel J. Grebow *

Quasi-terminator orbits are introduced as a class of quasi-periodic trajectories
in the solar radiation pressure (SRP) perturbed Hill dynamics. These orbits offer
signif cant displacements along the Sun-direction without the need for station-
keeping maneuvers. Thus, quasi-terminator orbits have application to primitive-
body mapping missions, where a variety of observation geometries relative to the
Sun (or other directions) can be achieved. This paper describes the characteris-
tics of these orbits as a function of normalized SRP strength and invariant torus
frequency ratio and presents a discussion of mission design considerations for a
global surface mapping orbit design.

INTRODUCTION

Spacecraft missions to primitive bodies (i.e., comets, asteroids, and small planetary moons) offer
many new challenges relative to the terrestrial, planetary, and large moon missions that have been
done historically. One challenge is the dynamical environment for a spacecraft in close proximity
to these bodies. Because of their small size, primitive bodies typically have highly-irregular grav-
itational felds, and third-body gravity and solar radiation pressure (SRP) inf uences become very
signif cant to the motion of a spacecraft. For orbital motion that is not too close to the surface of
a small primitive body (roughly 5 km diameter or less), SRP is the dominant perturbation to Kep-
lerian orbit dynamics [1]. In these situations, the effect of SRP usually drives large oscillations in
orbit eccentricity [1] that lead to destabilizing interactions with the irregular gravity feld or strips
the spacecraft away from the body outright [2].

Only a few types of ballistic orbital motion have been described that are stable under strong SRP.
The terminator orbits (also known as plane-of-sky orbits) are perhaps the best known of such orbits
[1,3,4,5, 6]. The terminator orbits are oriented such that the orbit normal points directly toward or
away from the Sun. These orbits are nearly circular when the SRP perturbation is strong and they
are known to remain stable over a large area of phase space [6, 7]. The downside of terminator orbits
is that the orbit geometry only allows for Sun-body-spacecraft angles, ¢, of roughly 90 deg. This
geometry results in images with very long shadows and/or obstruction by intervening topography,
which are undesirable for shape and surface properties mapping. The terminator orbit geometry
may also be limiting for other global mapping campaigns (e.g., infrared, gravity, radar) depending
on the orientation of the primitive body pole relative to the Sun.

*Mission Design Engineers, Mission Design and Navigation Section, Jet Propulsion Laboratory, California Institute of
Technology, M/S: 301-121, 4800 Oak Grove Dr., Pasadena, CA 91109.
(©2012 California Institute of Technology. Government sponsorship acknowledged.



This paper introduces the quasi-terminator orbit as an alternative to the terminator orbits that of-
fers a much wider range of Sun-relative geometries. Two different types of these quasi-periodic or-
bits are explored in detail; one type has large excursions away from the terminator plane (i.e., where
¢ = 90) toward the sunlit-side and the other has similar geometry extending to the shadowed-side of
the primitive body. These two types of quasi-terminator orbits are found by mapping the invariant
tori [8, 9, 10] that populate each of the two center manifold structures of the stable terminator orbits,
respectively. The geometry of the Sun-side quasi-terminator orbits can allow for ¢ values that vary
between roughly 40 and 90 deg (depending on the scenario) at a variety of viewing geometries. Fur-
ther, these ballistic orbits do not nominally require any station-keeping maneuvers (in the dynamical
model considered here), which may signif cantly decrease the operational complexity of a mapping
campaign relative to a strategy involving frequent maneuvers. Thus, quasi-terminator orbits may
present an attractive platform for global mapping campaigns at primitive bodies.

Multi-revolution terminator orbits, called resonant terminator orbits (RTOs) here, are another
variety of stable periodic orbit solution for SRP-perturbed dynamics found by following period-
multiplying bifurcations with the terminator orbit family [11]. Here, the RTOs are observed to be
special periodic cases of quasi-terminator motion, where the two frequencies of motion on the in-
variant torus are commensurate. This relationship between the quasi-terminator orbits and RTOs
means that many characteristics of quasi-terminator orbits (e.g., minimum radius, minimum ¢, and
frequencies of motion) can be approximated by those of nearby RTOs. This relation is used exten-
sively here to characterize quasi-terminator orbits across a broad design space, which would oth-
erwise be very time consuming because of the computation time required to compute the invariant
tori explicitly.

The characteristics of the quasi-terminator orbits are presented in normalized form as a function
of a relative SRP strength parameter 3, orbit energy, and the ratio of the two frequencies of motion
on the invariant torus. This approach allows the results to predict quasi-terminator orbit properties
across the span of mission parameters. The normalization [2] also formally defnes dynamical
equivalence between missions. For example, the Rosetta[ 12], Hayabusa2[13], and OSIRIS-REx[14]
missions all have similar normalized dynamics, and therefore, similar quasi-terminator geometries.
However, when the trajectories are dimensionalized, the time and distance scales for these missions
are very different, so a particular quasi-terminator orbit may have more desirable scale and duration
properties in one situation than another. Since the normalization scale factors are easily computed,
these dimensionalized properties can be quickly assessed using the data presented here.

The paper begins with a description of the normalized Hill equations of motion with SRP used to
derive these results. This section also presents the 3 parameter and normalization scale factors for
number of relevant primitive body missions. The following section describes the terminator orbit
solutions to the SRP-perturbed Hill dynamics, including a discussion of the eigenvalue structure
of these orbits that leads to quasi-periodic motion. Quasi-terminator orbits are then introduced as
quasi-periodic motion on the two center manifolds around the stable terminator orbit solutions. The
connection between quasi-terminator orbits and RTOs is also established. The next section uses the
computed characteristics of the RTOs to describe selected characteristics of the quasi-terminator
orbits. The following discussion focuses on key mission design parameters that determine appli-
cability of quasi-terminator orbits to a particular situation, including periapsis altitude, minimum
¢, and mapping coverage. Some example mapping orbits are presented for parameters consistent
with the OSIRIS-REx and Hayabusa2 missions. Finally, some limitations for application of quasi-
terminator orbits are discussed and the concluding remarks are given.



EQUATIONS OF MOTION

The dynamics of a spacecraft in close proximity to most primitive bodies are primarily driven
by the SRP and the gravitational attraction of the Sun and primitive body (i.e., the primaries). Let
r = [x,y,z] and v = [x,y,Z] represent the normalized spacecraft position and velocity vectors, re-
spectively, and their coordinates with respect to a rotating frame centered on the primitive body.
This frame is defned such that the X direction points from the Sun to the primitive body, the Z
direction is aligned with the angular velocity of the primaries, and the y direction completes the
right-handed triad. The equations of motion for the Augmented Normalized Hill Three-Body Prob-
lem (ANH3BP) (adapted from [2] for a mutually-circular primary orbits),
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are used to describe the spacecraft motion near a point-mass primitive body under the inf uence of
SRP and solar tide in this coordinate frame. For the normalization, the unit length is (14,5 / lsun) 13R
and the unit time is 1/N, where Upp 1s the gravitational parameter of the primitive body, Lsy, is the
gravitational parameter of the Sun (1.327 x 10'! km?/s?), R is the constant distance between the Sun
and the primitive body, and N =/ Ls,»/R? is the mean motion of the primary orbits. The parameter
B is the nondimensional acceleration due to SRP (assuming a spherical spacecraft) and is computed

using Eq. 2,
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where G is the solar fux constant (= 1 x 10'* (kgkm)/s?) and (m/A) is the effective mass-to-
projected area ratio for the spacecraft. The quantity in the frst parentheses of the intermediate
quantity in Eq. 2 is the dimensional SRP acceleration.

Properties of the ANH3BP

The ANH3BP is time invariant and admits an integral of the motion, or the well-known Jacobi

constant,
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where X = [r, V] is the spacecraft state. Not only must every trajectory preserve C throughout, but
at a particular value of C, all possible trajectories exist on a fve-dimensional (5-D) energy surface.
The Jacobi constant C can be used to exclude non-physical regions of the phase space, as determined
by the zero-velocity curves.

Comparing normalized results between primitive body missions

Table 1 and Figure 1 present B for a number of historical and upcoming primitive body missions
as a function of (m/A) and ;. As seen, B can vary by a few orders of magnitude across the space
of these primitive body missions. Since (m/4) and p,,, are independent quantities, it is possible for
missions that seem very different to have the same 3, and thus, the same ANH3BP dynamics. For
example, the Hayabusa2 mission to 1999 JU3 has very similar orbital dynamics as the OSIRIS-REx



Table 1: Parameters for various mission conf gurations.*

Mission Target Hpp R(AU) | (m/A) B unit unit
(km?3/s%) [15] (kg/m?) length (km) | time (days )
NEAR Eros 4.5 x 1074[16] 1.46 ~ 84 0.60 3280 103
Hayabusa Itokawa 2.1 x107[17] 1.32 ~49[18] | 59 49.6 88.2
Dawn Vesta 17.8[16] 236 | ~23[19] | 0.06 181000 211
Rosetta Churyumov- 6.7x 1077 3.46 | ~17[12] | 26 1110 374
Gerasimenko [20, 21]

Hayabusa2 1999 JU3 ~5.5x1078 1.19 | =~49[18] | 21 125 75.5
OSIRIS-REx | 1999 RQ36 | 4.0 x 107[22] 1.13 | =74[23] | 33 52.6 69.8
Orion 2000 SG344 | 4.7x10712[24] | 0.98 ~ 153 | 150 4.81 56.4

mission to 1999 RQ36, even though (m/A) and u,, for these missions differ by a factor of 2.4 and
11, respectively .

An integrated dimensionless trajectory can be trivially converted to dimensional units for any
problem with that  using the unit length and time values (given in Table 1 various primitive body
mission targets). Even for missions with the same f3, the length and time scale of that trajectory
in dimensional coordinates can vary signif cantly based on the target primitive body. Even without
a particular trajectory to consider, the unit time and length can be used comparatively to estimate
the relative scale and timing of trajectories for different missions. For Hayabusa2 and OSIRIS-REx
where [ is the nearly the same, the unit length and time in Table 1 show that the actual size of a
particular ANH3BP orbit at 1999 JU3 is about 2.4 x larger and the orbit period is about 8% longer
than at 1999 RQ36.

TERMINATOR ORBITS

The periodic terminator orbit solutions in the ANH3BP have previously been described at length
[1,2,3,4,5,6, 11, 25]. These orbits have been demonstrated to be stable and robust to parameter
uncertainty when the SRP perturbation is strong. Numerical studies have demonstrated stability
(i.e., quasi-periodic motion) up to £40 deg in initial position and greater than 0.25 in eccentric-
ity away from the periodic terminator solutions in a high-f delity dynamics model [6, 7]. This
knowledge suggests that orbits with good mapping geometries may be found through a more formal
development of these quasi-periodic solutions.

This section calls attention to the properties of terminator orbits that are relevant to the following
developments. The geometry of terminator orbits is such that the orbit normal points either toward
or directly away from the Sun and the orbit center is slightly offset away from the primitive body
center such that the Sun-body-spacecraft angle ¢ is always greater than 90 deg. Figure 2(a) shows

*References are given when available, otherwise the parameters have been approximated using the authors’ best
judgment. In the latter cases, the ~ symbol is used before the numerical data given.
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Figure 1: Contours of f3 as a function of effective spacecraft mass-to-area ratio and primitive body grav-
itational parameter. Historical and current primitive body mission conf gurations are plotted for interest
(parameter values used are in Table 1). This f gure is useful for estimating  (and the applicability of quasi-
terminator orbits) to potential future mission conf gurations.

a number of terminator orbits for B = 25 plotted in spatial coordinates. As 3 increases from zero,
the terminator orbits move from being highly eccentric to nearly circular [1].

Orbits in the stable branch of the terminator orbit family (those in blue in Figure 2(a)) are known
to be robust in a strong SRP environment. The oscillatory linear stability property of these orbits
has been established through many approaches [3, 4, 6]. The monodromy matrix for these stable
orbits has two pairs of unit magnitude complex eigenvalues. The eigenvalue pair with the stability
transition (between the blue and red orbits in Figure 2(b)) is called the dark-side pair and the pair
that is stable across the family is called the Sun-side pair for reasons that will be presented in the
next section. Whenever the absolute value of the complex phase angle 6 for either pair equals
27tn/m, the opportunity for an m:n bifurcation with a family of RTOs exists (see Figure 2(b)).

QUASI-TERMINATOR ORBITS

The large region of nonlinear stability around terminator orbits suggests a dense space of quasi-
periodic motion. These trajectories are named quasi-terminator orbits in this paper. A main con-
tribution of this paper is to map and characterize a portion of the quasi-terminator orbit space. It
is found that the quasi-terminator orbits described here have geometric characteristics that may be
advantageous for primitive body global mapping campaigns.
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Two manifolds of quasi-terminator orbits

The stable terminator orbits where two center manifolds exist are the focus of this paper. Gener-
ally, perturbations in the span of the two center manifolds evolve on an invariant torus described by
three frequencies. This general motion is not explored in this paper. Instead, two 2-D manifolds of
invariant tori are studied here which are invariant slices in this larger quasi-periodic space.

Each pair of unit-magnitude, complex conjugate eigenvalues of the monodromy matrix M (Figure
2(b)) implies the existence of nearby quasi-periodic motion in a linear sense. Each such eigenvalue
pair gives rise to a center manifold populated by 2-D quasi-periodic invariant tori originating from
each stable orbit, so long as 27r/6 is an irrational number. The trajectories on the two sets of
invariant tori corresponding to the two pair of stable eigenvalues are geometrically distinct. The
Sun-side quasi-terminator orbits extend away from the terminator orbit primarily in the —x direction
and arise from the Sun-side stable eigenvalue pair. The dark-side quasi-terminator orbits, on the
other hand, extend away from the terminator orbit primarily in the +x direction and arise from the
dark-side stable eigenvalue pair.

Resonant Terminator Orbits

When 6 = 27n/m for some terminator orbit eigenvalue pair, a period-multiplying bifurcation
exists and the nearby invariant tori collapse into a set of m:n resonant terminator orbits (RTOs).
This class of orbits have been described previously as multi-revolution terminator orbits [11], but
they are recognized here as a special case in the broader space of quasi-terminator orbits on the two
center manifolds of the stable terminator orbits.

The terminator orbit eigenstructure shown in Figure 2(b) shows a few opportunities for period-
multiplying bifurcations from either pair of stable eigenvalues, but a countably large number of
bifurcation opportunities exist for both pairs of stable eigenvalues. When the period multiplying
bifurcation family is followed away from the terminator family at these points, a family of periodic
RTOs are generated. Some examples of RTOs are shown in Figure 3. To identify the RTOs with
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Figure 3: Example RTOs (blue) with x-y and y-z projections (light blue): (a) 6:1 Sun-side at § = 25, (b) 5:1
dark-side at B = 200, (c) 3:1 Sun-side at § = 100, and (d) 4:1 dark-side at B = 500.

the manifold in which they are embedded, the RTOs that extend toward the —x side of the primitive
body as the family is continued away from the bifurcation with the terminator family are called
Sun-side RTOs (Figure 3(a,c)) and those that extend toward the +x side are called dark-side RTOs
(Figure 3(b,d)).

Geometrically, an m:n RTO makes m revolutions around the body before closing on itself (Fig-
ure 3(a-d)). Near the bifurcation with the terminator family, each revolution is very similar to the
terminator orbit. Members of the RTO family that are farther from the terminator family become
more and more planar and the eccentricity of each revolution around the body increases. The geom-
etry of the RTOs closely follows that of the nearby quasi-terminator orbits, with the only difference
being that the frequency of motion about the x-axis is such that the orbit is periodic instead of quasi-
periodic. For quasi-terminator orbits, the notation f:1 is used, where f is the frequency ratio of
motion on the 2-D torus.

All of the dark-side RTOs are linearly stable throughout the family™. The Sun-side RTOs are
linearly stable throughout the family only when the terminator orbit at the originating bifurcation
point is stable. When this is not the case, Sun-side RTO are unstable near the bifurcation, but may

TThis is true, but for low m/n ratios, this stability seems to be marginal in a non-linear sense.
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Figure 4: Poincaré section (z = 0, Z < 0) of Sun-side quasi-terminator orbits for f =25 and C =
—6.8. The spatial plots and Poincaré¢ crossings for several RTOs are also shown. The last computed

Sun-side torus of the family is also plotted in spatial coordinates.

transition to stable at some point in the family. For stable RTOs, one pair of stable eigenvalues stays
very close to the real unity throughout the family. Previous numerical work has shown that RTOs
can be robust to initial state and dynamics perturbations (such as an eccentric primitive body orbit
and irregular gravity feld), but the degree of robustness appears to be signif cantly less than for
terminators, especially as the orbits become more extended along x [11].

Examples of Quasi-Terminator Orbits

The geometry of the more general quasi-terminator orbits are mapped by computing and contin-
uing invariant tori using the method of Gémez and Mondelo [8]. Typical examples of the Sun-side
and dark-side families of tori around terminator orbits are shown in Figures 4 and Figure 5, re-
spectively, using a Poincaré section at z = 0 when z < 0 with a fxed C. The blue curves in these
plots represent the 1-D intersection of the 2-D invariant torus with the Poincaré section. Motion
that begins on one blue curve (i.e., on a particular torus) has all its subsequent intersections with
the Poincaré section on that same curve. Each plot shows a variety of quasi-terminator and RTO
solutions at the chosen energy level (C = —6.8 for the Sun-side and C = —20 for the dark-side), as
well as nearby stable/unstable manifold structures.
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Relationship between RTOs and Quasi-terminator invariant tori

In addition to the invariant tori on the respective manifolds, Figures 4 and 5 also show the cross-
ings of the Poincaré section for selected RTOs arising from the corresponding eigenvalue pair. The
coordinates of these crossings are seen to follow the contours of the most adjacent quasi-terminator
tori, and thus, the geometry of the RTOs is shown to be very similar to that of the nearby quasi-
terminator orbits. A similar result is seen when plotting the torus frequency ratio for the quasi-
terminator orbits. These relationships between the RTOs and quasi-terminator invariant tori have
been observed in every case examined as part of this study. These observations support the no-
tion that the RTOs at a given terminator orbit energy are, in fact, special cases of periodic quasi-
terminator motion that are embedded in the quasi-terminator orbits in the time and spatial domains.
It follows that many geometric and temporal properties of the quasi-terminator orbits can be inferred
from nearby RTOs. This observation offers signif cant advantage for analysis since the RTOs are
much faster to compute and are easier to characterize because of their f nite orbit period *.

LA caveat that RTOs are only observed to be embedded in the center manifolds of quasi-terminator motion described
when these manifolds exist. Sun-side RTOs are found to exist at C greater than the maximum energy terminator orbit for
each . In these cases, quasi-terminator orbits do exist around the RTO, but the geometry of these orbits is not the same
as those orbits in the center manifolds of the terminator orbit.



QUASI-TERMINATOR AND RTO TRAJECTORY CHARACTERISTICS

In the previous section, the RTOs are found to be special resonant cases of quasi-terminator
motion that are embedded temporally and spatially in the two broader spaces of invariant tori dis-
cussed. As such, many characteristics of the RTOs (e.g., minimum ¢, minimum orbit radii, and
orbit periods) can be extended to nearby quasi-terminator motion. This is advantageous for analysis
because the RTOs are computed more easily and are easier to characterize than the invariant tori of
quasi-terminator orbits.

All Sun-side quasi-terminator orbits can be described by a 8 value and a torus frequency ratio
(m/n in the case of RTOs). Characteristics of orbits across this relatively simple space of solutions
can thus be described in a single plot. Figure 6 shows trends in minimum radius as a function of 3
and RTO resonance. The plots compare minimum radius achieved on the terminator orbit or RTO
versus (a) C, (b) minimum ¢, (c) maximum radius, and (d) orbit period. Normalized impact radii
from Table 1 have been added for some primitive bodies on the (b) and (c) subplots. In these plots,
the trends shown as the m-to-n ratio changes can be assumed to persist (e.g., if the minimum ¢ is
larger for a 5:1 RTO than a 3:1, then the 7:1 will be even larger). Further, the space between two
RTOs at the same f3 is populated with quasi-terminator orbits with torus frequency ratios between
that of the RTOs". In conjunction with the unit time and length scales in Table 1, these plots can be
used to estimate the period and geometry of any quasi-terminator orbit choice, as well as the effect
of changing 3 or the torus frequency ratio.

DESIGNING GLOBAL MAPPING CAMPAIGNS WITH QUASI-TERMINATOR ORBITS

The primary factors to consider when designing a quasi-terminator orbit for visual spectrum
surface mapping are minimum orbit radius, maximum orbit radius, orbit period, and minimum ¢.
The geometry of the quasi-terminators shown in Figure 6 is such that a good orbit design must
strike a balance between the best range of viewing geometries and the orbit eccentricity, as well as
between the mission’s 3 value and the target body’s orbit. Also, note that all of these design factors
are dimensionalized quantities. Thus, the applicability of quasi-terminator orbits to a particular
mission also has a strong dependence on the target body.

Minimum and maximum orbit radii

When considering the applicability of quasi-terminator orbits to a particular mission, the rela-
tionship between minimum normalized orbit radius and minimum ¢ is the foremost consideration
(Figure 6(b)). The best range of viewing geometries (i.e., smallest minimum ¢) is achieved for the
smallest periapsis radius and for small values of . However, if a quasi-terminator orbit comes too
close to the primitive body, the unmodeled irregular gravity perturbation may destroy the quasi-
periodic behavior. Generally, the orbit should be designed so that the minimum radius is an appro-
priate multiple of the impact radius that avoids this destabilizing interaction. Since the minimum
allowable normalized orbit radius varies between missions (Table 1), it is possible that an orbit with
a desired minimum ¢ may be acceptable for one dimensionalized scenario, but come too close (or
even impact) for another at the same 3. Thus, the best achievable range of ¢ will vary from mission
to mission.

$Technically, if C is larger than the maximum C for the corresponding terminator family, the quasi-terminator orbits
near the RTO are not embedded in the center manifold of the terminator orbit, and thus, do not necessarily have consistent
geometries with the RTOs in Figure 6.
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Figure 6: Sun-side (SS) quasi-terminator orbit properties as a function of  and resonance. (a) C, (b)
minimum ¢, (¢) maximum ||r||, and (d) Period (as a fraction of primaries’ orbit period).

The maximum radius of the orbit may also be of interest because the minimum ¢ is always
achieved near the maximum orbit radius. The trend is that as minimum ¢ gets smaller, the maximum
radius gets larger (Figure 6(c)). At some point, the imaging resolution achievable at the maximum
radius may become unacceptable, which limits the achievable ¢ with quasi-terminator orbits. The
maximum radius is also larger for smaller values of [, so the best  values for quasi-terminator
orbits must strike a balance between the resolution and viewing geometry objectives. The unit
length, which is a strong function of heliocentric orbit size, is also an important driver for the

maximum orbit radius.

Orbit period

Time is another important consideration for quasi-terminator orbit design. The time that it takes
for a quasi-terminator orbit to achieve a full range of geometries relative to the body varies with f3,

11



the frequencies of motion for the chosen torus, and the required groundtrack spacing. Figure 6(d)
shows orbit periods for RTO families at a number of 8 values and resonances as a fraction of the
primitive body orbit period around the Sun. There is a strong trend: as 3 values get smaller, the
orbit period fraction grows rapidly. As such, quasi-terminator and RTOs are less appealing for space
missions when f3 is small and/or the primitive body orbit period is more than a couple of years.

The obvious trend between different RTO resonances is that higher resonances take longer since
they make more revolutions around the body before repeating. However, this effect is less signif cant
when considering that higher resonances arise from terminators with smaller periods. The difference
in orbit periods between different resonances may only be a secondary driver in orbit selection for
typical space missions. Also, a fraction of a complete RTO revolution may be acceptable for some
mapping scenarios.

Example mapping orbits

Consider a situation where B = 25, which is comparable to the dynamics to be experienced by
the Rosetta, Hayabusa2 and OSIRIS-REx missions (Table 1). Since 3 is (roughly) the same for all
of these missions, the shape of the quasi-terminator orbit solutions is also (roughly) the same. The
key distinguisher of applicability of quasi-terminator orbits to these missions is the unit time and
length scales (Table 1).

For Rosetta, whose target is comet 67P/Churyumov-Gerasimenko, the unit time scale is 374
days and quasi-terminator orbits have primary orbit periods around 6 months (Figure 6(d)). This
is probably too long for most missions. Also, the unit length scale results in maximum orbit radii
of 100 km or more, which may not allow for the desired mapping resolution. The time and length
scales are similar for other Jupiter-family comets and main-belt asteroids, which suggested limited
applicability of quasi-terminators to these types of missions.

For the near-Earth asteroid missions OSIRIS-REx and Hayabusa2, the scales of quasi-terminator
orbits are more favorable (Table 1). Figure 7 and 8 (subplots a, ¢, and e) show a few sample quasi-
terminator mapping orbits for these two missions, respectively, with their Sun-relative geometry in
terms of right ascension and declination in the frame of the ANH3BP (subplots b, d, and f)¥. The
plots show that the full range of geometries from quasi-terminator orbits can be achieved at these
bodies in 1-2 months. The length scales are a bit different for these two missions, but potentially
reasonable in both cases. The OSIRIS-REXx orbits are a bit smaller, with periapsis radii as low as < 1
km and apoapsis radii up to 8 km, and the Hayabusa2 orbits vary between roughly 1.5 and 16 km
from the center of mass. For both these missions, quasi-terminator orbits appear to be a reasonable
approach to global mapping.

Modeling limitations

The reader is reminded of the limitations of the ANH3BP dynamics used to derive the quasi-
terminator orbits. First, the gravitational potential of most primitive bodies is more complex than the
point-mass model used in the ANH3BP. Generally, this is a small perturbation so long as the quasi-
terminators are designed with a suff ciently large minimum radius. The unmodeled eccentricity of
the primitive body orbit around the Sun can be a signif cant issue since the strength of the SRP

I The Sun-relative geometry is independent of any spin or pole orientation parameters that describe the motion of the
primitive body surface; these parameters must be def ned to determine the actual global surface mapping performance for
a particular orbit.
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Figure 7: Sample quasi-terminator orbits for the OSIRIS-REx mission parameters. The left f gures show the
orbits plotted in spatial coordinates (with x-y and x-z projections) and the right f gures show the corresponding

range, declination, and right ascension in the Sun-relative coordinate frame. (top) 3:1 RTO propagated 36.8
days, (middle) 6.51:1 quasi-terminator orbit propagated 90 days, (bottom) 8:1 RTO propagated 48.8 days.
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Figure 8: Sample quasi-terminator orbits for the Hayabusa2 mission parameters. The left f gures show the
orbits plotted in spatial coordinates (with x-y and x-z projections) and the right f gures show the corresponding

range, declination, and right ascension in the Sun-relative coordinate frame. (top) 4:1 RTO propagated 43.2
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acceleration varies as the inverse square of the distance to the Sun. This variation will cause many
of the larger quasi-terminator orbits to escape near periapsis. This problem can be addressed a few
different ways that are reasonable. Finally, changes in spacecraft attitude may cause variations in
the SRP acceleration from the constant downstream value that is modeled in the ANH3BP. This
could be problematic depending on the details and f exibility of the proximity operations mission
strategy.

CONCLUSIONS

The most obvious application of quasi-terminator orbits is global mapping campaigns at primitive
bodies. These ballistic trajectories can reasonably achieve a range of Sun-body-spacecraft angles (¢)
from approximately 40 to 90+ deg at all clock angles (measured with respect to the Sun direction),
which allows for the wide variety of solar incidence and emission angles needed to create an accurate
surface map.

The quasi-terminator solutions are derived in normalized coordinates such that the entire space
of solutions is defned a ratio of solar pressure strength to gravity (), an orbit energy, and the
ratio of the two frequencies def ning the quasi-periodic motion on a torus. It is shown that the best
viewing geometry is achieved with small values of 3, but the orbit periods are long and the range
at the minimum ¢ is relatively large in these cases. A moderate value of 3 between 10 and 100 is
found to present a good balance of these parameters for typical mission applications. The unit time
and length scales for normalization are also critically important for assessing application of quasi-
terminator orbits to a specif ¢ mission. Both scales have a strong dependence on the primitive body
range from the Sun, which means that orbits at more distant bodies have longer periods and larger
sizes. The best application for quasi-terminator orbits seems to be robotic missions to near-Earth
asteroids, where orbit periods between 1 and 3 months and orbit radii between 1 and a few 10s of
km. Example mapping orbits for the upcoming OSIRIS-REx and Hayabusa2 missions have been
presented which demonstate the applicability of quasi-terminator orbits to these missions.
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