
AAS 13-297

ORBIT CLUSTERING BASED ON TRANSFER COST

Eric D. Gustafson∗, Juan J. Arrieta-Camacho†, and
Anastassios E. Petropoulos‡

We propose using cluster analysis to perform quick screening for combinatorial
global optimization problems. The key missing component currently preventing
cluster analysis from use in this context is the lack of a useable metric function that
defines the cost to transfer between two orbits. We study several proposed metrics
and clustering algorithms, including k-means and the expectation maximization
algorithm. We also show that proven heuristic methods such as the Q-law can be
modified to work with cluster analysis.

INTRODUCTION

A common challenging problem for mission designers is to design a tour of multiple bodies cho-
sen from a given set. The global combinatorial nature of the optimization problem almost certainly
precludes an exhaustive solution for a large enough set of bodies. Typically, a screening method is
used to select a subset of bodies that can then be studied in more detail. This screening process is
critical to finding a satisfactory solution. In this paper, we propose using cluster analysis as a fast
and effective method to perform this initial screening given a set of closed orbits (0≤ e < 1) in the
restricted two-body problem.

The motivation for this work was the 5th Global Trajectory Optimization Competition (GTOC).∗

At a very high level, the problem posed by the 5th GTOC involved visiting a sequence of asteroids
with a low-thrust spacecraft. The asteroids were to be chosen from a list of 7,075 possible asteroids,
representing just a small sample of the many small bodies in our solar system.

There are many clustering algorithms available for partitioning data. The common foundation
among all clustering methods is the existence of a metric function that defines the “distance” be-
tween two members of the set. In the case of orbital transfers, this metric could be any parameter of
interest such as optimal delta-V or time of flight.

Unfortunately, when assessing large sets of orbits, computing the optimal transfer cost between
all pairs of orbits would be far too time consuming. An additional complication is that some heuris-
tic methods do not provide a mathematically valid metric, which makes them incompatible with
most clustering methods. For instance, many successful methods such as the Q-law1 are not sym-
metric and do not obey the triangle inequality.
∗Navigation Engineer, Mission Design and Navigation Section, Jet Propulsion Laboratory, California Institute of Technol-
ogy, 4800 Oak Grove Drive, Pasadena, California 91109.

†Navigation Engineer, Mission Design and Navigation Section, Jet Propulsion Laboratory, California Institute of Technol-
ogy, 4800 Oak Grove Drive, Pasadena, California 91109.

‡Senior Engineer, Mission Design and Navigation Section, Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, California 91109.
∗http://www.esa.int/gsp/ACT/mad/pp/GTOC/index.htm

1

http://www.esa.int/gsp/ACT/mad/pp/GTOC/index.htm

These problems raise a few interesting questions: What makes a good metric function for orbital
transfers? What is a good parameterization of the orbits? Which clustering algorithms work well?

To answer these questions, we perform a study of various metric functions, parameterizations, and
clustering methods. The clustering algorithms to be studied are standard, well-known algorithms: k-
means,2 fuzzy c-means (FCM),3 expectation maximization (EM),4 and a graph partitioning method.
The k-means algorithm and its variants partition set members into discrete clusters such that each
member of the cluster is closer to the cluster’s mean than any other cluster’s mean. In contrast to
the discrete clusters computed by k-means, the fuzzy c-means and EM algorithms assign to each
set member a probability that it is a member of a given cluster. This has the advantage of not only
providing groupings of orbits, but also a nearest-neighbor type of ranking.

We will study two metrics – one a modification to the well-established Q-law, and the other
new. We show that even though the Q-law does not produce symmetric costs, nor does it obey the
triangle inequality, it is trivial to form a symmetric Q-law variation, and that the triangle inequality
violation does not necessary cause clustering algorithms to fail. The new metric is based on a
different parameterization of the orbit size and shape. We show that the angular momentum vector
and eccentricity vectors, scaled by factors to account for the ease by which the orbit may be change
by an applied acceleration, provide a vector space in which the standard Cartesian norm can be used
as the distance metric.

CLUSTERING BACKGROUND

Clustering is the process of assigning members of a data set to a number of partitions such that
the elements of the partition are close to each other in some sense. Ideally, the clusters themselves
are space far apart from each other. Cluster has found many applications in biology, data mining,
computer science and other varied fields. We will briefly describe the the four clustering algo-
rithms mentioned above, showing example results on a simulated two-dimensional data set shown
in Fig. 1. The simulated data is an equally-weighted Gaussian mixture of five distributions, creating
five clusters that are obvious to the human eye, but not always so obvious to clustering algorithms.

k-means Algorithm

Consider the problem of partitioning the dataset

X = {1,5,7,9,12,13}. (1)

into K = 3 disjoint, non-empty subsets c1, c2, and c3 whose union is X . It would not be unreasonable
to suggest

c1 = {1,5}, c2 = {7,9}, and c3 = {12,13}. (2)

In measuring how appropriate is such partition, one could compute the arithmetic mean for every
cluster subset:

µ1 =
1+5

2
= 3, µ2 = 8, and µ3 = 12.5, (3)

and calculate the squared error between µk and the points in ck from

J(ck) =
∑
xi∈ck

||xi−µk||2, k = 1,2,3 (4)

to yield
J(c1) = (1−3)2 +(5−3)2 = 8, J(c2) = 2, and J(c3) = 0.5, (5)

2

10 5 0 5 10 15
15

10

5

0

5

10

Figure 1. Randomly generated 2-D data set.

for a total among subsets of

J(C) =

3∑
k=1

J(ck) = 8+2+0.5 = 10.5. (6)

As it turns out, it is possible to select a different dataset partitioning that would result in a lower

J(C). Indeed, selecting

c1 = {1}, c2 = {5,7,9}, and c3 = {12,13} (7)

yields J(C) = 8.5—the absolute minimum value of J for the given dataset and three partitions.

The k-means algorithm is a generalization of the previous procedure for an arbitrary X and K; its

goal is to generate the partition that minimizes the sum of the squared error (4) over all K subsets

(known as clusters) in the following manner:

1. Select an initial partition with K clusters; repeat 2 and 3 until cluster membership stabilizes.

2. Generate a new partition by assigning each item to its closest cluster center.

3

3. Compute new cluster centers.

Even the small, one-dimensional example presented above highlights some of the challenges inher-
ent to this algorithm. For example, the initial selection of the number and location of clusters is
moslty arbitrary, and a poor selection of either can lead to poor run-time performance, clustering
quality, or both.

In addition, being defined over a metric space, the algorithm requires a measure of distance,
which can be challenging to define for points representing entities different from positions in the
Euclidean space.

Finally, the global minimization of (4) is a known NP-hard problem, which forces the algorithm
to provide local minima for all but the simplest of problems. Despite its shortcomings, k-means
clustering remains one of the most popular and simple clustering algorithms, and it can provide
rapid insights into the groupings of datasets.

Since the initial choice of centers directly impacts the final clustering, much work has been spent
studying methods to improve the initialization of the k-means algorithm. An algorithm called k-
means++ is meant to choose cluster centers in a way such that the standard k-means algorithm is
much more likely to run faster and give better results.5 In this paper, we always use k-means++ to
initialize our k-means runs. Defining the set of points to be clustered as X and D(x) as the distance
between any point and its nearest center, the k-means++ algorithm can be written as follows:

1. Chose one center at random from X

2. Chose the next center from X with probability D2(x)∑
x∈X D2(x)

3. Repeat Step 2 until k centers are chosen.

4. Proceed with the k-means algorithm, initialized with the centers from above.

Figure 2 shows the results of a k-means clustering on the example data set. Each cluster is drawn
in a different color, outlined by the convex hull. The diamonds mark the initial cluster centroids
determined by k-means++, and the squares mark the final. Clearly k-means does a very god job on
the clusters with large inter-cluster separation.

Fuzzy c-means Algorithm

Instead of the hard clustering of k-means, fuzzy c-means assigns to each particle a cluster weight
for each cluster. This can be represented by a matrix W with elements wi j, where i is the point index
and j is the cluster index. Each wi j ∈ [0,1], where a value of zero means the point i has no belonging
in cluster j, and a value of one means the point i completely belongs to cluster j. Additionally,∑

j wi j = 1, so the weighting values may be viewed as probabilistic cluster assignments, hence the
“fuzziness.”

Given in initial weight matrix, and a user-specified value for the parameter m, the fuzzy c-means
algorithm is as follows:

1. Choose initial weighting assignment matrix, W . We used k-means for this, therefore wi j

equals one or zero.

4

10 5 0 5 10 15
15

10

5

0

5

10

0

1

2

3
4

k-means Clustering

Figure 2. Example of k-means clustering on example 2-D data set.

2. Compute the centers using

ck =

∑
i wikxi∑
i wik

, where xi is the point i (8)

3. Compute the new weights using

wik =

⎛
⎝∑

j

(
d(ck,xi)

d(c j,xi)

)2/(m−1)
⎞
⎠

−1

(9)

4. Repeat Steps 2 and 3 until the maximum weight change is no larger than some tolerance.

Figure 3 shows the results of a fuzzy c-means clustering on the example data set. Each cluster is

drawn in a different color, outlined by the convex hull of points in a cluster with weighting greater

than 0.8. The clustering is similar to k-means, but as seen, the boundaries of the clusters at a given

threshold can overlap.

5

Figure 3. Example of fuzzy c-means clustering on example 2-D data set.

Expectation Maximization Algorithm

The expectation maximization algorithm is another soft clustering method like fuzzy c-means, but

with a more mathematically formal basis and well-established convergence behavior. In particular,

expectation maximization is perfectly suited to estimating the parameters of Gaussian mixtures

(GM). We will abbreviate this pair as EM-GM. EM-GM produces a weight matrix, called γi j here,

along with a cluster weight, mean and covariance : w j, μ j and Σ j. Let the data points be yi,

i = 1, . . . ,n, be clustered into k groups. Then the EM-GM algorithm is as follows:6

1. Choose initial parameters for w(0)
j , μ(0)

j and Σ(0)
j . As with fuzzy c-means, we used k-means to

perform this initialization.

2. Expectation step: For each cluster (j = 1, . . . ,k), compute the new weight matrix:

γm
i j =

w(m)
j φ(yi|μ(m)

j ,Σ(m)
j)∑k

l=1 w(m)
l φ(yi|μ(m)

j ,Σ(m)
j)

, i = 1, . . . ,n (10)

6

and

n(m)
j =

n∑
i=1

γ
(m)
i j , (11)

where φ(yi|µ(m)
j ,Σ

(m)
j) is the value of the Gaussian probability distribution function (pdf) with

mean µ j and covariance Σ j evaluated at yi during the m-th iteration.

3. Maximization step: For each cluster (j = 1, . . . ,k), compute the new pdf parameters:

w(m+1)
j =

n(m)
j

n
, (12)

µ
(m+1)
j =

1

n(m)
j

n∑
i=1

γ
(m)
i j yi, (13)

Σ
(m+1)
j =

1

n(m)
j

n∑
i=1

γ
(m)
i j

(
yi−µ

(m+1)
j

)(
yi−µ

(m+1)
j

)T
. (14)

4. Convergence check and iteration: Compute the new log-likelihood:

`(m+1) =
1
n

n∑
i=1

ln

 k∑
j=1

w(m+1)
j φ(yi|µ(m+1)

j ,Σ
(m+1)
j)

 (15)

If |`(m+1)− `(m)|> ε for some tolerance ε , then return to step 2.

Figure 4 shows the results of an EM-GM clustering on the example data set. The clusters in
the case are quite different from k-means and fuzzy c-means. Fore each cluster, the 1-, 2-, 3-, and
6-sigma ellipses are drawn with successively more transparency. EM-GM perfectly found the long
skinny distribution in cluster 2, although one could argue this is expected since the underlying data
was generated with a Gaussian mixture—exactly what EM-GM is designed to find.

Graph Partitioning Algorithm

Clustering algorithms may also be applied to graphs, where the distance between each elements is
no longer important; the only necessary inputs are the connections between the elements. Clustering
is performed by partitioning the graph based on the edge structure, where ideally there are many
edges within each cluster and few edges between clusters.

The question then is how to compute the connections given a set of points. Conceptually, one
could construct an n-nearest neighbor graph, however, this is computationally expensive and once
the neighbors and their distances are computed, the value of clustering is possibly diminished. In this
study, we used Delaunay triangulation, implemented using the Qhull program.7 The underlying idea
is that the Delaunay triangulation tends to put many edge connections in regions of high density, and
few connections where points are sparse. See Fig. 5 for the Delaunay triangulation of the example
data set. Notice the large number of edges in the dense regions, and fewer edges in regions that
are clearly between clusters. One could further improve the graph, for example, by removing the
longest edges, however, we simply used the edges directly from Qhull.

The second part of the algorithm is to partition the graph. We used the multi-level partitioning
code METIS8 to do this. We found METIS to be extremely fast as discussed later. Figure 6 shows

7

10 5 0 5 10 15
15

10

5

0

5

10

Figure 5. Delaunay triangulation of example 2-D data set.

Table 1. Distance Metric Criteria

Criterion Description

d(x,y)≥ 0 non-negativity
d(x,y) = 0 if and only if x = y “Identity of indiscernibles”

d(x,y) = d(y,x) symmetry
d(x,z)≤ d(x,y)+d(y,z) triangle inequality

Q-law

In the Q-law,1 the proximity quotient, Q, is defined, serving as a candidate Lyapunov function

for use in Lyapunov feedback control for transfers between orbits using low-thrust. In summary,

the proximity quotient attempts to judiciously quantify the proximity of the osculating orbit to the

target orbit. It may be thought of as the best-case quadratic time-to-go. Q is defined as follows:

Q = (1+WPP)
∑

œ

WœSœ

[
d(œ,œT)

˜̇œxx

]2

, for œ = a,e, i,ω,Ω (16)

where the five orbital elements (œ) are the semimajor axis (a), eccentricity (e), inclination (i), argu-

ment of periapsis (ω), and longitude of the ascending node (Ω); WP and the Wœ are scalar weights

9

10 5 0 5 10 15
15

10

5

0

5

10

Figure 6. Example of graph clustering on example 2-D data set.

greater than or equal to zero; the subscript T denotes the target orbit element value (without sub-

script, the osculating value is indicated); ˜̇œxx nominally denotes the maximum over thrust direction

and over true anomaly on the osculating orbit of the rate of change of the orbit element (due to

thrust); P is a penalty function; Sœ is a scaling function; and d(œ,œT) is a distance function:

d(œ,œT) =

⎧⎨
⎩

œ−œT for œ = a,e, i

cos−1 [cos(œ−œT)] for œ = ω,Ω
(17)

where the principal value, namely [0,π], is used for the arc cosine. The peculiar form of the distance

function for ω and Ω is used because it provides an angular measure of the distance between two

positions on a circle using the “short way round” the circle, because it is differentiable with respect

to œ [except when d(œ,œT) = π], and because the sign of the derivative indicates whether œ leads

or lags œT based on the short way round.

The proximity quotient, Q, is a very useful heuristic in defining the ease of transfer between two

orbits, however, it only adheres to the first two conditions in Table 1. In this section, we will describe

methods by which a distance metric can be transformed to overcome its violations of symmetry and

the triangle inequality. First, any asymmetric pseudo-metric can be used to form a symmetric metric

10

by forming an appropriate function combining the two bilinear forms. Let an asymmetric pseudo-
metric be d̃(x,y). In this study, we enforced symmetry of the proximity quotient Q by defining a
symmetric metric as

d′(x,y) = min(d̃(x,y), d̃(y,x)). (18)

Given a set of elements {x1,x2, . . . ,xn}, one may compute the psuedo-metric between each pair
of elements, and store the values in a matrix D̃ such that D̃i j = d̃(xi,x j) = d̃i j. Applying Eq. 18 to
D gives D′ = min(D̃, D̃T), where min(·) is the element-wise minimum. Another interesting choice,
not studied here, would be to use the p-norm instead of the minimum:

d′(x,y) =
(
d̃(x,y)p + d̃(y,x)p) 1

p , p≥ 1

A rather naı̈ve but effective algorithm to ensure the triangle inequality is shown is Algorithm 1.
To use the algorithm, one would repeatedly call function UPDATED until the output is identical
to the input. The algorithm simply searches for a shorter path between elements i and j through
element k:

d̃i j = min
k
(dik +dk j).

Although convergence behavior was not formally analyzed, several tests on matrices up to 7,075×
7,075 never required more than 6 iterations for the algorithm to converge.

Algorithm 1 Triangle Inequality Enforcement

Require: D̃′ is symmetric and size n×n
1: function UPDATED(D′)
2: V ← 0n×n . Zero matrix of size n×n
3: for i← 1,n do
4: ~v1← D′Ti: . The i-th row, transposed to a column
5: for j← i+1,n do
6: ~v2← D′: j . The j-th column
7: ~vk←~v1 +~v2
8: v←min(~vk)
9: Vi j← v

10: Vji← v
11: end for
12: end for
13: return V
14: end function

The present transformation of the proximity quotient into a quantity that satisfies the distance-
metric criteria of Table 1 can affect a sizeable portion of aseroid orbit pairs. We can quantify the
impact by computing the ratio of the modified proximity quotient to the original for every pair of
orbits. Figure 7 shows a histogram of the cost ratios for all orbit pairs in the GTOC-5 set. For many
pairs, the ratio is exactly one, indicating that the original proximity quotient could not be improved
upon. However, for most pairs, the ratio is less than one, which means the transformation to enforce
symmetry and the triangle inequality resulted in a smaller value of the distance metric.

11

0.0 0.2 0.4 0.6 0.8 1.0
Qmod/Qorig

0

1000000

2000000

3000000

4000000

5000000

C
ou

nt

Figure 7. Modified proximity quotient, Qmod, as compared to the original.

A subtlety of using centroid-based clustering algorithms such as k-means and fuzzy c-means with
the Q-law is the computation of cluster centroids. These methods assume the objects being clustered
are vectors, which are trivial to average. When using the Q-law, the underlying representation of
orbits is a set of Keplerian elements, which do not form a vector space. Therefore, we need a more
general solution, which can be obtained by realizing that the vector mean satisfies an optimization
problem formulated in a general sense. Given n vectors,~ri, the mean,~rG, can be computed directly:

~rG =
1
n

∑
i

~ri. (19)

However, we can also define~rG indirectly as follows. Define ~ρi as the relative position of~ri with
respect to~rG: ~ρi =~ri−~rG. It is straightforward to show that the cost function

J =
∑

i

~ρi ·~ρi (20)

is minimized by the solution in Eq. (19). The cost function in Eq. (20) is the sum of the squares of
the distance of the vectors with respect to the mean. In other words,

~rG = argmin
~x

∑
i

d2(~x,~ri). (21)

12

Written in this form, we can solve for the centroid of a cluster using a general distance metric and
arbitrary parameterization:

ck = argmin
x

∑
i

d2(x, pi), (22)

where for cluster k, ck is the centroid and pi are elements of the cluster.

Scaled~h-~e Vectors

Given the complexities involved with using the Q-law in clustering, the motivation exists to de-
velop a metric that satisfies all metric properties and also uses a vector space to describe the orbits.

The angular momentum vector, ~h, and eccentricity vector, ~e, together completely describe the
size, shape and orientation of an orbit (phase-free). It is equivalent to using the set of orbital el-
ements semi-major axis, eccentricity, inclination, argument of periapsis, and right ascension of
ascending node (a, e, i, ω , and Ω), but without concerns about angular singularities.

One could imagine performing clustering using the 6-vector obtained by concatenating the angu-
lar momentum vector and eccentricity vector together. This approach doesn’t work well because of
the drastic difference in magnitude of eccentricity (0≤ e < 1) and the angular momentum. Also, it
doesn’t take into account how easy or difficult it is to change a given orbit. For example, it take less
energy to change the angular momentum a certain amount for a larger orbit than a smaller one.

We propose a scaled version of the [~h,~e] vector, where the scale factors are determined by how
easily the vectors are changed when an external acceleration is applied. Let the applied acceleration
be ~f , the position be~r, velocity be~v, and the standard gravitational parameter be µ . The equations
of motions are then:

~̈r =− µ

r3~r+
~f . (23)

The angular momentum and eccentricity vectors are:

~h =~r×~v, (24)

~e =
~v×~h

µ
−~r

r
. (25)

Under the applied acceleration, the derivatives of~h and~e are:

~̇h =~r×~f = S(~r)~f , (26)

~̇e =
1
µ

(
~f ×~h+~v× (~r×~f)

)
=

1
µ

(
−S(~h)+S(~v)S(~r)

)
~f . (27)

Equations (26) and (27) serve the same purpose as the Gauss equations. The matrix S(~z) is the
skew-symmetric cross-product operator:

S(~z) =

 0 −z3 z2
z3 0 −z1
−z2 z1 0

 .

13

Next, we find the maximum amount of change in ~h that could be achieved by a given applied
acceleration:

fh = max
~f

‖~̇h‖
‖~f‖

= max
~f

‖S(~r)~f‖
‖~f‖

= max
~f s.t.‖~f‖=1

‖S(~r)~f‖ ≡ ‖S(~r)‖= ‖~r‖= r, (28)

and for~e:

fe = max
~f

‖~̇e‖
‖~f‖

=
1
µ
‖−S(~h)+S(~v)S(~r)‖= 1√

2µ

√
r2v2 +4h2 + rv

√
r2v2 +8h2. (29)

Equations (28) and (29) give the sensitivity of~h and~e to ~f at any instance along the orbit. Next,
we averaged these sensitivities over the orbit using true anomaly as the independent variable. One
could also choose the maximum value over an orbit, such as in the Q-law. Equation (28) is straight-
forward to average:

fh =
1

2π

∫ 2π

0
fhdθ = a, (30)

where θ is the true anomaly and a is the semi-major axis. The averaging of Eq. (29) is not as
straightforward, and we used numerical quadrature to evaluate

fe =
1

2π

∫ 2π

0
fedθ . (31)

Now to the actual scaling. For each orbit, we are given~h and~e, then we compute fh and fe. Next,
we create the scaled vectors:

h̃ =
~h(
fh
)

ẽ =
~e(
fe
)

Finally, the distance between two orbits, i and j, is simply the Cartesian distance between
[
h̃i, ẽi

]
and

[
h̃ j, ẽ j

]
. By using a well-known distance metric, we ensure that the metric properties in Table

1 are satisfied. For clustering, the 6-element vectors
[
h̃, ẽ
]

are fed directly to the algorithms.

For a concrete example, Table 2 shows the angular momentum and eccentricity vectors for the
first five points in the GTOC-5 contest. Table 3 shows the scaled values for the same orbits. Notice
that the units of the scaled vectors are velocity – km/s in this case. This means that the distance
between two scaled vectors can be interpreted as an approximation to the ∆V required to transfer
between the two. Also, the scaling ensures that h̃ and ẽ are relatively close in magnitude, which is
beneficial to clustering algorithms.

RESULTS

All 7,075 orbits from the GTOC-5 set are shown in three different ways in Figure 8. First, in the
top-left is the a,e, i space, in the top-right are the angular momentum vectors, and in the bottom-left
are the eccentricity vectors. Each orbit corresponds to one blue dot. Interspersed with the blue dots
are black dots, which are elements of one of the 100 clusters produced by k-means using the scaled

14

Table 2. Example raw h-e vectors

Asteroid ID hx (km2/s) hy (km2/s) hz (km2/s) ex ey ez

1 -4.704e+08 -5.917e+08 6.873e+09 0.3128 -0.0416 0.0178
2 -8.106e+08 -5.544e+08 5.134e+09 -0.1219 0.1866 0.0009
3 -8.512e+07 1.199e+09 5.876e+09 0.5187 -0.1857 0.0454
4 8.764e+08 3.287e+08 5.682e+09 -0.1081 0.5563 -0.0155
5 -1.601e+09 2.239e+09 5.475e+09 0.4982 -0.0759 0.1767

Table 3. Example scaled h-e vectors

Asteroid ID h̃x (km/s) h̃y (km/s) h̃z (km/s) ẽx (km/s) ẽy (km/s) ẽz (km/s)

1 -1.1754 -1.4785 17.1733 2.9755 -0.3956 0.1696
2 -3.7415 -2.5590 23.6970 -1.5401 2.3580 0.0115
3 -0.2180 3.0714 15.0523 5.5628 -1.9916 0.4870
4 2.3795 0.8925 15.4290 -1.2053 6.2013 -0.1728
5 -4.0431 5.6568 13.8294 5.2432 -0.7991 1.8597

~h and~e vectors. This particular cluster contains 67 orbits, which are shown in the bottom-right. The
black dots on this subplot mark the periapsis location of each orbit, and the thick black orbit is the
centroid of the cluster.

CONCLUSIONS AND FUTURE WORK

We presented four clustering algorithms for the automatic classification of celestial body orbits in
terms of their navigation proximity: k-means, fuzzy c-means, expectation maximization, and graph
partitioning.

To the extent of our knowledge, despite the widespread adoption of these algorithms in many
analytical sciences, this work represents the first attempt at applying large-scale data clustering
techniques for target identification in the context of spacecraft trajectory optimization.

The central challenge for any clustering methodology lies in the definition of proximity between
two orbits, and in the adequacy of using such proximity measure as a metric space in the strict
sense. Another difficulty in using any of the clustering methods discussed in this paper is the need
to provide the number of clusters a priori. These algorithms are sensitive to such selection, and
should be run several times with different numbers of clusters to characterize the underlying data
set.

In addressing the shortcomings of k-means, we introduced other methodologies that ease the
hard partitioning characteristic of the original algorithm. Two are based on statistical assignment:
fuzzy c-means, which measures the membership of item i in cluster j as a probability in terms of a
weight wi j, and expectation maximization—an extension of fuzzy c-means—where the weight wi j is
updated iteratively until convergence to a Normal Distribution. We also introduced a methodology
that does not depend directly on a measure of proximity. Instead, the graph-partitioning algorithm
relies on representing the assignment problem as a graph, where the nodes are the orbits, and edges
are added iteratively based on graph algorithms like Delaunay triangulation, convex hull, or multi-
level partitioning.

We also provided two measures of proximity which provide better results than a naı̈ve direct
comparison among orbital elements: the proximity quotient and modifications thereof from the

15

0 5 10 15
0.20.40.60.8

0
50

100
150

a

a−e−i Space

e

i

−4−20 2 4
x 109

−5
0

5

x 109

−4
−2

0
2
4
6

x 109

hx

Angular Momentum Vectors (km2/s)

hy

h z

−0.5
0

0.5
−0.5
0

0.5

−0.5

0

0.5

ex

Laplace Vectors

ey

e z

−1 0 1 2 3

−2
−1

0
1

−0.4−0.200.20.40.6

x (AU)

Orbit Paths

y (AU)

z
(A

U
)

Figure 8. Example of k-means clustering using dynamically-scaled angular momen-
tum and eccentricity vectors

Q-law, and a metric in the~h−~e space.

We are encouraged by the results obtained so far, and have already benefited from the application
of these algorithms and metrics in the challenging GTOC competition. Our future lines of research
include: (1) providing a technique for the automatic classification or orbital debris, (2) introducing
a generalized metric space for sets of orbits, and (3) consolidating the strengths of the algorithms
presented into one general purpose classification mechanism.

ACKNOWLEDGEMENTS

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.

c© 2013 California Institute of Technology. Government sponsorship acknowledged.

16

REFERENCES
[1] A. E. Petropoulos, “Refinements to the Q-law for the Low-Thrust Orbit Transfers,” 15th AAS/AIAA Space

Flight Mechanics Conference, January 2005.
[2] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations,” Proc. 5th

Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/66, 1, 281-297 (1967)., 1967.
[3] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, MA, USA:

Kluwer Academic Publishers, 1981.
[4] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete Data via the EM

Algorithm,” Journal of the Royal Statistical Society. Series B (Methodological), Vol. 39, No. 1, 1977,
pp. 1–38.

[5] D. Arthur and S. Vassilvitskii, “k-means++: The Advantages of Careful Seeding,” Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, Philadelphia, PA, USA,
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[6] M. R. Gupta and Y. Chen, “Theory and Use of the EM Algorithm,” Found. Trends Signal Process., Vol. 4,
Mar. 2011, pp. 223–296, 10.1561/2000000034.

[7] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull Algorithm for Convex Hulls,” ACM
Trans. Math. Softw., Vol. 22, Dec. 1996, pp. 469–483, 10.1145/235815.235821.

[8] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs,”
SIAM J. Sci. Comput., Vol. 20, Dec. 1998, pp. 359–392, 10.1137/S1064827595287997.

17

	Introduction
	Clustering Background
	 k-means Algorithm
	 Fuzzy c-means Algorithm
	 Expectation Maximization Algorithm
	 Graph Partitioning Algorithm

	Distance Metrics
	Q-law
	 Scaled h-e Vectors

	Results
	Conclusions and Future Work
	Acknowledgements

