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Introduction 
• On July 4, 2005, the Deep Impact impactor spacecraft 

successfully collided with comet 9P/Tempel 1, while the 
main spacecraft flew  by and shuttered images which 
captured the impact 
– 1st hypervelocity impact of a primitive Solar System body with a 

spacecraft 
– Not primary goal of mission, but it did demonstrate that such an 

impact could be accomplished with current technologies and 
relatively modest budget 

• Recent NASA report outlined mitigation strategies should a 
NEO be found that poses a hazard to Earth 

• For relatively small asteroids and short turnaround times 
from detection to impact, kinetic energy technique 
recommended as the most practical and cost effective 
technique for deflection 



Introduction (cont) 
• DI impact made possible by onboard closed-loop autonomous 

navigation system (AutoNav) 
• AutoNav successfully used on all recent comet  missions to date 

– DS1 flyby of Borrelly (2001) 
– Stardust flyby of Wild 2 (2004) 
– DI flyby and impact of Tempel 1 (2005) 
– EPOXI flyby of Hartley 2 (2010) 
– Stardust NExT flyby of Tempel 1 (2011) 

• All missions required onboard closed loop target relative orbit 
knowledge and pointing control to sub-km level accuracy.  DI 
required additional closed loop orbit control to impact location to 
sub-km level accuracy 

• Technology well understood, robust, and mature, having performed 
successfully on 4 different spacecraft and 5 missions 

 
 



Introduction (cont.) 
• Parameter settings and sequence of events performed by AutoNav 

determined through simulations to optimize probability of impact 
for DI and Tempel 1 approach scenario 

• Key differences in scenarios between DI and potential asteroid 
deflection 
 

DI Asteroid Deflection 

Approach velocity 10.5 km/s ~3 - > 20 km/s 

Approach phase 
angle 

62 deg 0 to 180 deg 

Target diameter ~ 6 km ~100  to  ~300 m 



Introduction (cont) 

• In this paper, we broaden the experience base of 
AutoNav for use on the asteroid deflection scenario  

• Use Monte Carlo simulations to assess performance for 
a wide range of scenarios 
– Determine range of parameters from literature 
– Vary key parameters to test their sensitivity 

• Simulations include: 
– Generation of photorealistic images using triaxial shape 

model for asteroid 
– Orbit determination and maneuver targeting using 

AutoNav 



Deep Space Navigation 
• Step 1: design trajectory to intercept asteroid 

– Details of how this is done out of scope for this paper 
– Use other studies, in particular one by Hernandez and 

Barbee (2012), that found a candidate set of reference 
trajectories 

• Step 2: navigate reference trajectory from launch to 
impact 
– General techniques of navigation from launch, cruise, and 

early approach out of scope of this study 
– Main focus of this paper is the terminal guidance, defined 

here as point when AutoNav takes control. 
– As for DI, we assume this takes place approximately 2 

hours prior to impact 



Asteroid Ephemeris 
• Knowledge of precise target asteroid location an important 

consideration for deflection 
• Asteroid orbits obtained from ground observations, primarily optical 

from telescopes, but also from radar for a limited number of cases 
• Accuracy of ground-based asteroid ephemeris at time of deflection 

dependent on several factors (density, quality, geometry, types of 
observations, and length of time from last observation to the time of 
deflection) 

• Generally, we can say it is good to the tens of km level 
– Good enough for targeting to general vicinity during deep space cruise 
– Not good enough for precision targeting of small asteroids 

• Only way to achieve extremely high accuracy is to perform target 
relative navigation using onboard camea 



Optical Navigation 

• Optical navigation (OpNav) is the science of using 
onboard camera as navigation device 

• Images of target object against star background 
– Stars provide accurate inertial orientation of image 
– Centroiding on target body provides angular 

measurement relative to spacecraft 
– Accuracy increases as distance decreases 
– Provides only target-relative navigation information 

(ground-based radiometric data provides Earth-
referenced navigation information) 



Camera 

• Opnav images provided by onboard camera 
– Generally use framing camera CCDs with long 

focal lengths 
• Key parameters for camera include IFOV 

(angular resolution of single pixel), sensitivity 
• IFOV set by focal length, pixel size, and determines 

angular accuracy of measurement  
• Sensitivity determined by CCD and electronics, and 

determines S/N of light source, and hence ability to 
detect objects 



Camera (cont.) 
• “Unresolved” objects 

– Angular extent of target body less than 1 pixel 
– Stars always unresolved 
– Light spread to multiple pixels due to diffraction and lens defocusing 
– Centerfind using Gaussian function 

• “Resolved” objects 
– Angular extent of target body greater than 1 pixel 
– Shape becomes apparent as object increases in size 
– Use COB to do centerfinding 

• Offset of COB from true center of object can be large due to shape and lighting 
effects 

• Note that for the deflection scenarios we are examining, the target 
object will almost always be unresolved at start of terminal 
guidance, and may remain so until < 5 minutes to impact 



Camera (cont.) 
• Sensitivity of camera determines time of initial detection 

and ability to have both stars and target object visible in 
single frame 

• Initial detection 
– Early detection (> E-1 day) - initial OD and 1st targeting 

maneuver can be done with ground in the loop 
– Detection < E-1 day – all OD/maneuvers done onboard 

• Stars and object in single camera frame 
– May be difficult because target brightness will vary considerably 

from initial detection to last image used for targeting 
– If possible – precise attitude knowledge available, which greatly 

improves OD performance 
– If not possible – rely on star tracker/IMU for attitude 

knowledge.  Errors in this one of the largest contributors to 
targeting errors 

– Can use some techniques to mimic single star/target frames 
 

 



Attitude Knowledge 
• Errors in attitude knowledge directly affects accuracy of OD 

– Must estimate attitude error as part of filter which degrades 
strength of target relative angular information 

• “Stellar mode” attitude knowledge 
– Stars available in navigation camera, attitude knowledge near 

perfect 
• Star tracker/IMU 

– Degraded attitude knowledge depending on Star tracker/IMU 
information 

– Past experience suggests using IMU propagation only 
– Use 2 general classes of IMU capability for this study (MIMU, 

SSIRU) 
• MIMU found to be inadequate for current scenarios, so simulations 

only used SSIRU 



AutoNav Description 
• Entirely self-contained system uses onboard camera to take 

images of target body to perform guidance and navigation 
to impact target 
– Does not require radio link to other s/c or the Earth 

• 3 main components of AutoNav 
– Image processing element to extract target center-of-figure 

information 
– Orbit determination element to combine set of target centroid 

information in batch least-squares filter estimate of s/c 
trajectory 

– Guidance maneuver planning and execution element to 
compute delta-V needed to hit target 

• AutoNav initialized with ground-based information of 
spacecraft’s orbit relative to asteroid 

• 3 maneuver guidance strategy for robustness 



Targeting Scenario 
Initiation of terminal guidance 
with AutoNav at ~E-2 hours 1st targeting 

maneuver at ~E-1 hr 

2nd targeting 
maneuver at ~E-30 
min 

3rd targeting 
maneuver at ~E-2-4 
min 

Images taken at 2 
min intervals. 1st OD 
solution after ~30 
min 

R 

T 
Incoming Asymptote 

Spacecraft Trajectory 

B-plane intercept 

Images taken at 1 
min intervals.  

Images taken at  30 
sec intervals.  



Case Study Scenarios 

Vinf 
(km/s) 

Phase angle 
(deg) 

1 7.5 30 

2 7.5 80 

3 12.5 140 

4 20 5 

Reference for data:  Hernandez, S. and Barbee, B. “Design of Spacecraft Missions to Test 
Kinetic Impact for Asteroid Deflection”, Paper AAS 12-129, presented at the AAS/AIAA 
Spaceflight Mechanics Meeting, Feb. 2012. 
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Monte Carlo Simulations 
• Impactor targeting accuracy assessed through Monte Carlo simulations 
• Methodology of simulations 

– “Truth” trajectory generated by taking random samples from a normal 
distribution of parameters which describe the trajectory. 

– At varying intervals, truth trajectory and attitude used to create photorealistic 
image of target 

– Image data fed to AutoNav  to perform image processing and orbit 
determination using least-squares batch filter  

– At predetermined maneuver times,  maneuver to target impact computed 
based on filtered OD solution  

– Maneuver execution errors added to truth for propagation 
– As the truth trajectory either crosses surface of triaxial ellipsoid or is 

determined to have passed by without impacting, simulation stopped and 
relevant parameters describing hit or miss stored 

– DI MRI camera, with 10 microrad IFOV, used in the sims 
 



Simulation Parameters 
Initial asteroid-relative state error Position: 30 km   

Velocity: 5 cm/s   

Gates model maneuver execution 
error 

Fixed magnitude: 4.3 mm/s 
Proportional magnitude: 10% 
Fixed direction: 4 mm/s 
Proportional direction: 3.1% 

Gyro errors (MIMU class) Rate bias: 0.005 deg 
Angle random walk: 0.005 
deg/sqrt(hr) 

Gyro errors (SSIRU class) Rate bias: 0.0005 deg 
Angle random walk: 0.0005 
deg/sqrt(hr) 

Asteroid size 130 x 90 x 90 m 
390 x 260 x 260 m 

Asteroid pole orientation RA: 0 to 360 deg, uniform 
Dec: -90 to 90 deg, uniform 
 

All errors values are 1 sigma unless otherwise noted 



Simulation Results 

Case Vinf  
(km/s) 

Phase angle 
(deg) 

Stellar reference SSIRU 

100 m 300 m 100 m  300 m 

1 7.5 30 98.8% 100.0% 85.5% 100.0% 

2 7.5 80 96.5% 100.0% 73.8% 99.2% 

3 12.5 140 56.6% 99.4% 53.8% 90.6% 

4 20 5 100.0% 100.0% 75.4% 99.6% 



Example of Phase Effects in Final 
Image 

Phase = 5 deg Phase = 80 deg Phase = 140 deg 



ISIS Example 

• Vinf = 13.4 km/s 
• Approach phase = 9 deg 
• 1999RQ36 modeled as triaxial 

ellipsoid with dimensions: 
• 517 x 500 x 460 m 

• Pole orientation fixed 
• Rotation rate of 4.2 hours 
• Attitude knowledge using SSIRU 

class gyro 
• Results indicate 100% impact 

success rate, with all impact 
points within 100 m radius  

• More detailed sims as 
spacecraft hardware matures 



Conclusions 

• With only modest enhancements, AutoNav, can be 
used to perform asteroid deflection for asteroids down 
to 100 m or less 

• Attitude knowledge mode  is the single biggest factor 
in determining impact success 
– With stellar reference, probability of success fairly high 
– Otherwise, must have very stable IMU 

• Phase angle second largest effect 
– High value in designing reference trajectories which lower 

approach phase angle 
• Higher V-infinity not concern if phase angle is low 
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