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SUPPORTING CREWED LUNAR EXPLORATION WITH LIAISON 
NAVIGATION 

Jason M. Leonard,* Jeffrey S. Parker,† Rodney L. Anderson,‡  
Ryan M. McGranaghan,* Kohei Fujimoto,* and George H. Born§ 

This paper examines the benefits of navigating a crewed vehicle between the 
Earth and the Moon using both ground tracking and satellite-to-satellite track-
ing. Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) is 
a new technique that has been shown to dramatically improve the navigation of 
lunar satellites, libration orbiters, and Earth orbiting satellites using scalar inter-
satellite observations. In this paper, LiAISON is applied to the problem of navi-
gating a crewed vehicle to the Moon. It has been found that LiAISON observa-
tions improve the navigation accuracy enough to reduce the number of active 
ground tracking stations from six to three. 

INTRODUCTION 

Historically, crewed vehicles behave significantly different than that of a robotic spacecraft. 
While a robotic spacecraft is considered to be a quiet vehicle (performing maneuvers infrequent-
ly, passive thermal controls, minimal venting, etc.), crewed vehicles typically experience signifi-
cant statistical accelerations that have unknown or poorly modeled characteristics. During the 
Apollo era, it was determined that significant deviations in the trajectory occurred due to the ac-
tivity of the crew and certain outgassing or maneuver events.1,2 

The Apollo lunar missions required an extensive number of ground stations in order to obtain 
a reasonable state uncertainty. While the Deep Space Network (DSN) has been significantly ad-
vanced since the Apollo era and future spacecraft will quieter in terms of unmodeled accelera-
tions, three tracking stations alone are not sufficient to accurately estimate future crewed mis-
sions.3,4 One possible solution that has been put forth is that of introducing additional tracking 
stations culminating in the IDAC4B configuration.5 The proposed IDAC4B configuration utilizes 
the three DSN stations and three other tracking stations located in the opposite hemisphere. While 
this configuration is enough to obtain uncertainties necessary for a crewed mission to the Moon, 
infrastructure costs are significantly increased due to the additional stations. 

LiAISON is motivated by NASA's aim to develop a permanent presence at the Moon while 
supplementing current tracking networks to obtain similar or better navigation accuracies. The 
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LiAISON concept consists of collecting simple radiometric tracking signals between two or more 
satellites, and using those signals to supplement or replace ground-based tracking and navigation. 
Several architecture concepts are possible from cooperative LiAISON constellations to a single 
LiAISON based navigation beacon that provides a GPS-like capability for lunar missions as well 
as Earth orbiting satellites. LiAISON alleviates the heavy dependence on current ground-based 
time and state vector updates, allowing spacecraft to do autonomous navigation updates on-board 
with only satellite-to-satellite radiometric data.  

Hill et al. explored the use of multiple satellites placed in combinations of low lunar orbits and 
libration orbits about the Earth-Moon Libration points EML-1 and/or EML-2.6-9 A potential mis-
sion was examined, including only two satellites: one in a 100-km polar orbit about the Moon and 
the other in an libration point orbit (LPO) about the EML-2 point.7 The results demonstrated that 
satellites may be navigated at the Moon using realistic constraints and achieve uncertainties on 
the order of 100 meters root sum squared (RSS) or less for halo orbiters and 10 meters or less 
RSS for low lunar orbiters. Any ground tracking passes would only improve the solutions. 

A LiAISON constellation configuration involving two satellites, one in a halo orbit about 
EML-1 and one in geosynchronous Earth orbit, has also been analyzed previously. References 10 
and 11 demonstrated that the relative and absolute navigation of two satellites at GEO and EML-
1 is possible through the use of satellite-to-satellite range and range-rate measurements. In addi-
tion, this measurement type can supplement and significantly improve radiometric measurements 
taken from the DSN for satellite navigation.  

This study examines various navigation architectures, including ground-based and LiAISON-
supplemented configurations, for a crewed mission to the Moon. A crewed trans-lunar cruise mis-
sion is designed with a navigation satellite located at EML-1. Both ground-based tracking and 
LiAISON tracking support the crewed mission. An acceleration uncertainty model is developed 
based on Apollo era uncertainties to reflect a noisy crewed vehicle. Several tracking architectures 
are then compared. Finally, the sensitivity of navigation uncertainty due to the strength of the ac-
celeration uncertainty is determined. 

LIAISON NAVIGATION 

Autonomous satellite-to-satellite tracking relies on an ability to estimate the absolute positions 
of a spacecraft without the use of ground station observations. To do so, the size, shape, and ori-
entation of the satellite's orbit must be observable from the measurements available between the 
linked spacecraft. The observability of the system depends on one of these satellites occupying a 
unique trajectory. The determining factor in whether a unique trajectory can exist, and thus 
whether LiAISON is possible, is the acceleration function acting on the orbiter. No unique orbits 
exist in a symmetric acceleration field, such as a simple Earth two-body model.  

The success of LiAISON navigation is enabled by the ability to model the acceleration field 
with sufficient accuracy to identify the unique path of the spacecraft through that field. Accelera-
tion functions with sufficient asymmetry for LiAISON are provided by three-body systems that 
give rise to LPOs. The lunar libration point force field including perturbations from other planets 
and solar radiation is modeled to sufficient accuracy to make autonomous navigation possible.   
EML-1 and EML-2 LPOs are specifically well suited for LiAISON because they are locally 
unique and reside in regions where the asymmetry of the accelerations is strong. Under these 
conditions, a spacecraft at one of these Lagrange points can uniquely and absolutely determine 
the state of a second satellite using crosslink measurements without ground-based observations. 
Unlike GPS and similar satellite-to-satellite tracking systems, LiAISON does not require any a 
priori knowledge of either spacecraft's state. 
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MISSION DESIGN 

The reference mission designed for this study involves two spacecraft: one is a navigation sat-
ellite in a halo orbit about EML-1 and the other is a crewed spacecraft on a trans-lunar cruise 
(TLC). Figure 1 illustrates the tracking network used in this study that helps support a crewed 
spacecraft traveling form the Earth to the Moon that includes ground observations from the DSN 
as well as SST measurements obtained from a LiAISON navigation satellite near EML-1. 

 

There are several potential benefits of this LiAISON configuration. First, the EML-1 naviga-
tion satellite would have near-continuous communication with the spacecraft in TLC. The varia-
tion in geometry of the EML-1 navigation satellite and the TLC spacecraft provides significant 
information for tracking when compared to ground tracking. This variation in geometry allows 
for more information in the radial, in-track, and cross-track directions when compared to conven-
tional DSN radiometric data. 

Lunar L1 Halo Orbit 

This work assumes that there is already a dedicated navigation satellite in a halo orbit located 
at EML-1. The orbit is similar to that of the ARTEMIS mission that traversed the EML-1 point in 
2010 and 2011.12,13 The halo reference orbit used in this study was generated using a two-step 
process. First, the analytical expansion described by Richardson and Cary was used to generate a 
set of initial states.14 The reference epoch for the initial state is defined as January 1, 2020 ET 
(Ephemeris Time). The amplitude of the z-axis for the halo orbiter, Az, has been set to 35,500 km. 
The initial phase angle of the orbit, !, has been set to zero degrees. The parameters used to gener-
ate the reference trajectory are given in Table 1. 

 

Figure 1. LiAISON constellation for an EML-1 navigation satellite and a crewed 
spacecraft on TLC. The plots are visualized in the Earth-Moon rotating frame. 
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Table 1. EML-1 quasi-halo orbit parameters. 

Parameter Value Comments 

Az 35,500 km The z-axis amplitude 

! 0 deg The initial phase angle of the orbit 

tref 1/1/2020 00:00:00 ET The reference epoch, ephemeris time 

 

A set of six revolutions with four states per revolution of the halo orbit is used to describe the 
desired reference trajectory. Reference 15 describes a method that utilizes buffer states added to 
the initial set of states in order to differentially correct the reference trajectory into the full 
ephemeris. The differential corrector adjusts the position and velocity of each state, such that the 
discontinuities between integrated trajectory from one state to the next is less than 10-6 km and 
10-9 km/s, respectively. The resulting trajectory is still discontinuous, however, the level of error 
is well below that of observed navigation of halo orbiters; hence the resulting trajectory can be 
considered operationally ballistic.16 Once the differential corrector process is completed, the first 
and last revolution of the EML-1 orbit is pruned off, as described by Reference 15, resulting in 
four revolutions of a continuous orbit about EML-1. 

Trans-lunar Cruise  

The trans-lunar cruise designed for this study is based on a possible crewed mission traversing 
EML-1 and EML-2. The trajectory involves a direct transfer to the Moon from a LEO parking 
orbit from a trans-lunar injection maneuver (TLI), followed by a powered lunar flyby, resulting in 
a direct transfer to an EML-2 halo orbit. This work only utilizes the first phase of the TLC from 
LEO to the powered lunar flyby. The full TLC to EML-2 is described since the trajectory is con-
strained to enter a 29.5 day (one synodic month) EML-2 halo orbit. This orbital period was cho-
sen such that any crewed mission can launch a month late and have the same exact repeating ge-
ometry. 

 
Table 2. Initial LEO parking orbit conditions for TLI . 

 Orbital Parameters 

Epoch Alt. Ecc. Inc.  RAAN  Arg. Per.  True Anom.  

1/14/2020 00:00:00 ET 185 km 0.00 28.5 deg 223.144 deg 0 deg -191.756 deg 

 

The TLC begins from a LEO parking orbit with the orbital parameters given in Table 2. The 
transfer duration from LEO to the Moon is approximately 3.7 days. A delta-v of approximately 
3.134 km/s in the along-track direction is used to insert into the TLC trajectory. A lunar flyby 
occurs at 1/17/2020 16:28:1.9163 ET. The lunar flyby occurs at an altitude of 100 km with a del-
ta-v of approximately 213.56 m/s, performed at the periapse of the flyby. After the lunar flyby, 
the transfer to the EML-2 halo orbit is approximately 3.3 days. The crewed spacecraft reaches 
that halo insertion maneuver at 1/21/2020 00:00:00 ET with a delta-v of approximately 138.28 
m/s. 
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Ground Tracking Networks 

During the Apollo era there existed 12 land-based and sea-based tracking stations that made 
up the Manned Space Flight Network. These stations were necessary in order to obtain reasona-
bly accurate navigation estimates for early spaceflight. A subset of the Manned Space Flight 
Network was the DSN. The DSN is still operated today supporting various deep space missions 
that require accurate radiometric observations and communications. The DSN has three locations: 
Goldstone in California, Canberra in Australia, and Madrid in Spain. Another tracking network 
was defined during the Constellation program’s 4B integrated design and analysis cycle 
(IDAC4B). This network is denoted as IDAC4B and utilizes the DSN and three additional track-
ing stations located at Santiago, Chile; Hartebeesthoek, South Africa; and Usuda, Japan. The lo-
cation of these three tracking networks is shown in Figure 2. The IDAC4B stations are located in 
the opposite hemisphere of their corresponding DSN stations by a significant difference in lati-
tude. This difference in latitude provides a significant geometrical advantage when using radio-
metric data yielding better navigation solutions using a smaller number of stations when com-
pared to the Apollo tracking network. 

  

For this study, only the DSN and the IDAC4B tracking networks are used. It has previously 
been shown that the IDAC4B configuration is sufficient enough to obtain navigation uncertainties 
necessary for crewed spaceflight to the Moon.4,5 The DSN stations continuously collect two-way 
range and range-rate measurements with a 10 deg elevation mask on a 100 s observation interval. 
The additional IDAC4B stations continuously collect three-way range and range-rate data with a 
10 deg elevation mask on a 100 s observation interval. For this study, it is assumed that the 
crewed TLC spacecraft has access to the observations at all times for use in the onboard naviga-
tion. 

Figure 2. Locations of the DSN, IDAC4B, and Apollo tracking networks. The DSN network is com-
mon for all of the tracking networks and is denoted by green circles; the IDAC4B network is denot-
ed by red squares, and the Apollo stations are given by yellow diamonds. 
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SPACECRAFT DYNAMICAS AND MODEL LINEARIZATION 

The covariance analysis utilized in this work employs the propagation of the state and uncer-
tainty along a defined reference trajectory followed by measurement processing to obtain an ac-
curate estimate of the spacecraft’s uncertainty. This method employs linearization of the states in 
order to propagate the uncertainty over time along the reference trajectory. The associated dy-
namical equations of motion and linearization are presented. 

Spacecraft Dynamics 

This study is concerned with estimating the position and velocity of the LiAISON navigation 
satellite and the crewed spacecraft. Eq. 1 below gives the state vector that is being estimated  

 (1) 

where ri is the position (dimension 3) and vi is the velocity (dimension 3) for a given spacecraft    
i = 1, 2. The position and velocity vectors are both expressed in the Geocentric Celestial Refer-
ence Frame (GCRF). The remaining elements of the state vector are the SRP reflectivity coeffi-
cients, which will be defined later in this section. 

The state vector X is governed by a system of nonlinear first order differential equations. For 
this work, the time evolution of the position and velocity vectors of a spacecraft are given by 

 
(2) 

where a2-body is the general two-body equation of motion, anonspherical is the perturbing acceleration 
due to the nonspherical mass distribution of the central body, and an-body are the perturbations due 
to a third body. In addition to these gravitational accelerations, aSRP is the perturbation due to so-
lar radiation pressure. The gravitational potential including the two-body term is commonly given 
in terms of spherical harmonics as 

 
(3) 

The normalized Cartesian spherical harmonic model is used in this work.17 The acceleration vec-
tor from spherical harmonics is commonly given in a central body fixed based reference frame. 
For Earth, this is given as by International Terrestrial Reference Frame (ITRF) and for the Moon, 
it is given by Moon-Centered Moon-Fixed (MCMF) reference frame. For the conversion from 
ITRF to GCRF, the 1976 IAU Precession, 1980 IAU Nutation (no IERS corrections), Earth rota-
tion parameters, and polar motion are used.18 The Lunar Librations given by the JPL DE405 
ephemeris are used for the conversion from MCMF to GCRF.19,20  

The gravitational effects due to multiple bodies (n-body) are used as well as the two-body and 
nonspherical gravitational perturbations. This can include perturbations due to the Sun, Moon, or 
other planets. The acceleration an-body,k due to the gravitational attraction of body k is given by 

 
(4) 

where µk is the gravitational parameter of body k, rk,sat is the position vector from body k to the 
satellite, and !!!! is the position vector from the central body to the satellite k. The position of the 
celestial bodies can be obtained from the JPL DE405 ephemerides.19,20 
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A constant area and constant reflectance solar radiation pressure model is used. A shadow 
model is used that determines an approximate percentage of the Sun's face that is visible from the 
spacecraft location. The JPL DE405 ephemeris is used for the radii of the bodies used in the 
shadow model, and the solar radiation pressure is adjusted based on the distance from the sun.19,20 
The acceleration due to SRP is given by 

where PSRP is the solar radiation pressure of the Sun, CR is the reflectivity coefficient of the 
spacecraft, A   is the cross-sectional area, m is the mass of the spacecraft, and r   sat is the vector 
from the sun to the spacecraft.  

Dynamic Model Linearization 

The full nonlinear dynamics need to be linearized in order to estimate the uncertainty of the 
spacecraft configuration. The linearization is performed using partial derivatives of the state with 
respect to an initial state from tk to tk+1. The two important linearized parameters are the state 
transition matrix 

 
(6) 

and the process noise mapping matrix 

 
(7) 

where u is the process noise. The state transition matrix is obtained by integrating  

 (8) 

subject to the initial conditions ! !! ! !! ! !. The Jacobian matrix A(t) is evaluated along the 
reference trajectory X*(t) and is given by 

 
(9) 

where F (X*,t) is the time derivative of the state vector. 

OBSERVATION MEASUREMENTS AND MODEL LINEARIZATION 

In order to accurately estimate the uncertainty of the mission trajectories, it is necessary to de-
scribe the types of measurements that are collected. These measurements are used to determine 
the uncertainty in the satellite states and are generally nonlinear. The following sections give the 
full nonlinear measurement observations and their linearization for use in a covariance analysis. 

Measurement Models 

In this study, a simplified measurement model is used that consists of an idealized range and 
range-rate measurement between the two satellites performing LiAISON and the ground network. 
Previous studies have shown that a complex model that solves for the time of flight is not signifi-
cantly different for these studies when compared to the idealized range and range-rate measure-
ment.21 The idealized range between two satellites can be defined as 

 
(5) 
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 (10) 

where r1 and r2 are the position vectors of the two satellites performing LiAISON. Similarly, the 
ground tracking range can be obtained by replacing the second satellite’s position, r2, with the 
ground station position, rs. The error terms "bias and "noise are used to corrupt the idealized range.  

The idealized range-rate between two satellites is expressed as 

 
(11) 

where ! = r1 – r2 is the position vector between the two satellites and  ! = v1 – v2 is the relative 
velocity between the two satellites. Similar to the idealized range equation for ground tracking, 
the range-rate equation can be modified by assuming that the second satellite’s velocity, v2, with 
the ground station velocity, vs. A noise term, !!"#$%, is added to corrupt the idealized range-rate. 

Measurement Linearization 

The nonlinear measurements need to be linearized in order to perform the uncertainty analysis 
for this study. The partial derivative of the measurements with respect to the state is necessary for 
the linearization. The generalized measurement equation is given by 

 (12) 

where h is the nonlinear observation function and " is the observation noise. For this study, the 
observation function is defined by 

 
(13) 

The necessary observation linearization is given by 

 
(14) 

where k denotes a specific instance, tk, that the linearization happens. Since the state is not de-
pendent on the process noise u, the second term in Eq. 14 is zero. The first term in Eq. 14 is non-
zero and must be calculated analytically or numerically.  

NAVIGATION PERFORMANCE METHODS 

Crewed Vehicle Disturbance and Environment Modeling 

This section describes nongravitational disturbances in the trajectory that are commonly 
caused by environmental venting and frequent attitude adjustments that are common to crewed 
vehicles. It is assumed that these disturbances are primarily due to: 1) wastewater dumps, 2) mo-
mentum desaturation maneuvers, 3) attitude control burns, 4) CO2 venting, 5) thermal venting, 
and 6) water sublimation. These disturbances are increased during active crew cycles and are re-
duced during crew rest periods. These disturbances have been referred to as FLAK (Unfortunate 
Lack of Acceleration Knowledge).5 

The term FLAK appeared during the Apollo program when it was determined that significant 
deviations in the trajectory occurred due to the activity of the crew and certain outgassing or ma-
neuver events.1,2,5 The current model used to estimate these disturbances is a simple state noise 
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compensation method.5 Until a better model is developed, this simplistic FLAK model will be 
used to determine the necessary disturbance level. For the purpose of this work, a stochastic ac-
celeration process is used to create a spherical position dispersion of 500 m (1-!) every hour. 

A discrete white noise process is used to drive the acceleration of the system that in turn in-
duces errors in the position and velocity of the spacecraft. A linear discrete model for this system 
in one dimension is given by 

 
(15) 

where "t = tk+1 - tk and uk is the discrete Gaussian white noise process such that the statistics are 
E[uk] = 0 and E[ui uk] = q#i,k where #i,k is the Kronecker delta function. For the dynamic model 
and linearization used in this study, the state transition matrix and the process noise mapping ma-
trix for one dimension of this system is defined as 

 
(16) 

This method can be assumed if the dynamics do not change significantly over a short duration 
of time. In order to determine the strength of the process noise q one needs to know the covari-
ance Pk. Reference 5 shows that if one assumes that the initial covariance P0 is zero such that only 
the process noise used, the covariance Pk can be calculated as 

 
(17) 

This derivation allows for more than one variation while achieving the same results such that 
the total propagation time T = n"t. This shows that the same propagation time can result in differ-
ent step sizes "t and produce different values for Pk. Thus, the process noise strength q must be 
computed in conjunction with the selection of a step size "t. 

If one assumes that "t is small and thus n is very large, the covariance can be simplified and 
approximated by 

 
(18) 

This result is the same as that found in Reference 5 and similar to that in Reference 22.  

The only information concerning the strength of the process noise comes from the Apollo era. 
From the navigation solutions for Apollo missions, a trajectory deviation of several hundred me-
ters was experienced over an hour in lunar orbit.1,2,5  For this study, it is assumed that the uncer-
tainty due to FLAK during TLC has a spherical position dispersion equivalent to 500 m (1-!) 
over one hour. In order to determine the strength of the process noise in a single dimension, the 
position dispersion is equivalent to 288.6751 m. With a step size "t of 100 s and a propagation 
time of 1 hour (n = 36), the process noise strength is != 2.3148e-7 km/s2. This process noise 
strength is used for active periods when the crew is awake and moving around. For quiet periods 
when the crew is asleep, the amount of FLAK is 10 times less ( != 2.3148e-8 km/s2).  
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Cramér-Rao Covariance Study 

In the realm of orbit determination, there are many sequential estimation algorithms used to 
estimate the state and uncertainty of a spacecraft. These applications generally require the estima-
tion of unknown deterministic variables from a set of discrete nonlinear observations. Most prac-
tical estimation methods are not capable of estimating the optimal solution in such a way that it 
approaches the estimation error lower bound. The Cramér-Rao inequality is a very powerful tool 
that is used to estimate filter performance.23,24 The Cramér-Rao lower bound (CRLB) can be cal-
culated for any nonlinear system in which the truth trajectory is known and gives a limit on the 
best performance any nonlinear estimator can achieve. If Pk is the estimation error covariance 
matrix corresponding to any unbiased estimator of a set of unknown states, and Pk* is the CRLB, 
then the inequality exists 

 (19) 

such that Jk is the Fisher information matrix at time tk. It has been shown that the extended Kal-
man filter covariance propagation equations linearized about the true trajectory correspond to the 
CRLB for a continuous-time nonlinear deterministic system with discrete nonlinear measure-
ments.22 Thus the recursive relationship for the Fisher information matrix is obtained by solving 

 
(20) 

where Rk is the observation weighting matrix. This recursion process is initialized by setting the 
initial Fisher information matrix J0 = P0

-1. This formulation works well for cases that do not have 
process noise. However, for the covariance study performed in this work, an additive noise is 
necessary. Thus Eq. 19 is modified to include process noise and takes the form 

 

(21) 

where Q is the process noise covariance. For this study, Q is computed such that 

 (22) 

TRANS-LUNAR CRUISE NAVIGATION PERFORMANCE 

The results obtained in this section are for the TLC mission previously presented. Four track-
ing architecture types are analyzed: 1) DSN only, 2) IDAC4B only, 3) DSN and LiAISON, and 4) 
IDAC4B and LiAISON. Each simulation utilizes the same force models and measurement mod-
els. Both spacecraft are propagated using the GCRF coordinate system and are integrated using a 
point mass representation of Earth with third body perturbations due to the Sun and Moon using 
the JPL DE405 ephemeris. The TLC spacecraft uses a 20x20 spherical harmonic representation of 
the gravity field for both the Earth and Moon given by the GGM02C and LP150Q models respec-
tively.25,26 The CR values for the TLC and EML-1 halo orbiter are 1.5 and 1.2 respectively. FLAK 
levels vary based on crew activity levels where there are 16 hours of active periods followed by 8 
hours of quiet periods. The time evolution of the state dynamics is solved using the TurboProp 
orbit integration package for orbit propagation.27 Initial state and measurement uncertainties are 
given in Table 3. 
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Table 3. Navigation performance initial uncertainties. 

Estimation Parameters a priori uncertainty 
(1- !) 

Number of Parameters 

TLC spacecraft position 1,000 m 3 
TLC spacecraft velocity 500 m/s 3 
EML-1 spacecraft position 100 m 3 
EML-1 spacecraft velocity 1 m/s 3 
SRP Coefficient  5% 2 
Active FLAK  2.3148e-7 km/s2 $ 
Quiet FLAK  2.3148e-8 km/s2 $ 
LiAISON measurements   
     range 1 m $ 
     range-rate 1 mm/s $ 
Ground measurements   
     range 2 m $ 
     range-rate 0.5 mm/s $ 

 

TLC with Standard FLAK Level 

The best possible navigation uncertainties obtained in this study for a crewed vehicle using 
four different tracking architectures is shown in Figure 3. The results in Figure 3 show navigation 
uncertainties from just after TLI to just prior to the lunar flyby. Continuous range and range-rate 
measurements from each tracking source are taken every 100 s over the 3.7 day TLC.  

The navigation results show that all navigation architectures approach steady state after 12 
hours of tracking. DSN only tracking has the worst navigation uncertainty of all tracking architec-
tures. When using the IDAC4B configuration only, navigation accuracies are reduced significant-

Figure 3. Time history of the position and velocity RSS navigation uncertainty for four different 
tracking architectures. 1) DSN only (blue), 2) IDAC4B only (red), 3) DSN and LiAISON (black), and 
4) IDAC4B and LiAISON (green). For position (velocity), the solid grey line represents 100 m (10 
cm/s) uncertainty and the dashed grey line represents 10 m (1 mm/s) uncertainty. 
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ly from that of DSN only. When LiAISON measurements are introduced to the DSN only meas-
urements, the navigation uncertainty is reduced to that of using only the IDAC4B configuration. 
The best possible navigation solution is achieved using the IDAC4B configuration with LiAISON 
measurements. The 3D-RMS position and velocity uncertainties are given in Table 4. The 3D-
RMS values are calculated after steady state is reached at 12 hours until the lunar flyby occurs.  

Navigation Sensitivity to FLAK Level 

The Apollo era acceleration uncertainties due to FLAK events may not correspond directly to 
future crewed missions to the Moon. This analysis varies the strength of the FLAK events to de-
termine the navigation sensitivities due to the FLAK levels. Five different FLAK levels are cho-
sen for this study. Each simulation uses the exact same observation measurements and uncertain-
ties given in Table 3. FLAK levels are varied by 0.1, 0.5, 1, 2, and 5 times the acceleration uncer-
tainty determined from the Apollo era assumption that the acceleration uncertainties due to FLAK 
events creates a 500 m dispersion in 1 hour.  

The navigation sensitivities to the several different FLAK levels are shown in Figure 4 for 
both position and velocity. Similar to the previous analysis, the 3D-RMS values are calculated 
after steady state is reached at 12 hours until the lunar flyby occurs. FLAK levels are more sensi-
tive to the DSN only, IDAC4B only, and DSN and LiAISON tracking architectures. The 
IDAC4B and LiAISON navigation architecture is the least sensitive to various FLAK levels. The 
navigation uncertainties are similar to the previous analysis such that DSN has the largest 3D-

Architecture 3D-RMS Position Uncertainty  
(m) 

3D-RMS Velocity Uncertainty  
(m/s) 

DSN only 18,113.7 1.1028 

IDAC4B only 5,467.3 0.5645 

DSN + LiAISON 5,772.0 0.5713 

IDAC4B + LiAISON 130.4 0.0996 

Figure 4. Navigation sensitivities due to FLAK levels. 1) DSN only (blue), 2) IDAC4B only (red), 3) 
DSN and LiAISON (black), and 4) IDAC4B and LiAISON (green). 

Table 4. TLC navigation uncertainties. 
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RMS uncertainty while IDAC4B has the smallest uncertainty. IDAC4B only and DSN and LiAI-
SON have nearly identical navigation uncertainties. 

CONCLUSION 

The benefit of navigating a crewed vehicle between the Earth and the Moon using both ground 
tracking and satellite-to-satellite tracking was analyzed. Various navigation architectures, includ-
ing ground-based and LiAISON supplemented configurations of a crewed mission to the Moon, 
were examined. A crewed trans-lunar cruise mission was designed with a navigation satellite lo-
cated at EML-1. An acceleration uncertainty model based on historical Apollo data was derived 
to quantify the level of activity expected on a crewed vehicle. It was shown that a DSN only 
based tracking method has the worst position navigation uncertainty of about 18 km (3- !) for a 
standard FLAK level. The best navigation uncertainty was achieved using the six station IDAC4B 
configuration with a LiAISON based navigation satellite producing a position uncertainty of 
about 130 m (3- !).  Navigation uncertainties were about the same for the IDAC4B only case and 
the DSN with LiAISON tracking case and resulted in position uncertainties of about 5.5 km (3- 
!). Various FLAK levels were also examined to determine the sensitivity of the navigation uncer-
tainties due to unmodeled stochastic acceleration intensity. The least sensitive configuration to 
FLAK levels was determined to be the IDAC4B with LiAISON architecture. If the IDAC4B only 
tracking architecture can produce sufficient navigation uncertainty for crewed missions to the 
moon, then it could be substituted for three ground stations and one LiAISON satellite signifi-
cantly reducing the cost of navigation for the crewed vehicle. 

ACKNOWLEDGMENTS 

The authors would like to thank the JPL Center Innovation Fund (CIF) Program, sponsored by 
NASA Office of the Chief Technologist (OCT), which has supported this research. 

The research presented in this paper has been partially carried out at the Jet Propulsion Labor-
atory, California Institute of Technology, under a contract with the National Aeronautics and 
Space Administration. Copyright 2012 California Institute of Technology. Government sponsor-
ship acknowledged. 

REFERENCES 
1 Wollenhaupt, W. R., “Apollo Orbit Determination and Navigation,” 8th AIAA Aerospace Sciences Meeting, New 
York, AIAA Paper 1970-27, Jan. 1970. 
2 D’Souza, C., “Process Noise for Lunar Missions,” NASA Johnson Space Center, 2006. 
3 Getchius, J., Kubitschek, D. G., and Crain, T. P., “Orion Navigation Sensitivities to Ground Station Infrastructure for 
Lunar Missions,” AAS Guidance and Control Conference, Univelt, San Diego, CA, 2008. 
4 D’Souza, C., Getchius, J., Holt, G., and Moreau, M., “Lunar Navigation Architecture Design Considerations,” AAS 
Guidance and Control Conference, Univelt, San Diego, CA, 2009. 
5 Ely, T. A., Heyne, M., and Riedel, J. E., “Altair Navigation Performance During Translunar Cruise, Lunar Orbit, De-
scent, and Landing,” Journal of Spacecraft and Rockets, Vol. 49, No. 2, March–April 2012. 
6 Hill, K., Lo, M. W., and Born, G. H., “Linked, Autonomous, Interplanetary Satellite Orbit Navigation (LiAISON),” 
AAS/AIAA Astrodynamics Specialist Conference, No. AAS 05-399, AAS/AIAA, Lake Tahoe, CA, August 7–11, 2005. 
7 Hill, K., Parker, J. S., Born, G. H., and Demandante, N., “A Lunar L2 Navigation, Communication, and Gravity Mis-
sion,” AIAA/AAS Astrodynamics Specialist Conference, No. AIAA 2006-6662, AIAA/AAS, Keystone, Colorado, Au-
gust 2006. 
8 Hill, K. and Born, G. H., “Autonomous Interplanetary Orbit Determination Using Satellite-to-Satellite Tracking,” 
AIAA Journal of Guidance, Control, and Dynamics, Vol. 30, No. 3, May–June 2007. 



 14 

9 Hill, K., Autonomous Navigation in Libration Point Orbits, Ph.D. thesis, University of Colorado, Boulder, Colorado, 
2007. 
10 Parker, J. S., Anderson, R. L., Born, G. H., Fujimoto, K., Leonard, J. M., and McGranaghan, R. M., “Navigation 
between geosynchronous and lunar L1 orbiters," AAS/AIAA Astrodynamics Specialist Conference, No. AIAA-2012-
4878, Minneapolis, MN, August 13 – 16, 2012. 
11 Leonard, J. M., McGranaghan, R. M., Fujimoto, K., Born, G. H., Parker, J. S., and Anderson, R. L. “LiAISON-
Supplemented Navigation For Geosynchronous and Lunar L1 Orbiters.” AAS/AIAA Astrodynamics Specialist Confer-
ence, No. AIAA-2012-4664, Minneapolis, MN, August 13 – 16, 2012. 
12 Angelopoulos, V., "The ARTEMIS mission." Space science reviews, Vol. 165, Issues 1 – 4, pp. 3-25, 2011. 
13 Sweetser, T. H., Broschart, S. B., Angelopoulos, V., Whiffen, G. J., Folta, D. C., Chung, M. K., Hatch, S. J., and 
Woodard, M. A., “ARTEMIS Mission Design,” Space science reviews, Vol. 165, Issues 1 – 4, pp. 27-57, 2011. 
14 Richardson, D. L. and Cary, N. D., “A Uniformly Valid Solution for Motion of the Interior Libration Point for the 
Perturbed Elliptic-Restricted Problem,” AAS/AIAA Astrodynamics Specialist Conference, No. AAS 75-021, 
AAS/AIAA, July 1975. 
15 Parker, J. S., Low-Energy Ballistic Lunar Transfers, Ph.D. thesis, University of Colorado, Boulder, Colorado, 2007. 
16 Folta, D., Woodard, M., and Cosgrove, D., “Stationkeeping of the First Earth-Moon Libration Orbiters: The 
ARTEMIS Mission,” Proceedings of the 2011 AAS/AIAA Astrodynamics Specialists Conference, 2011. 
17 Gottlieb, R. G., “Fast Gravity, Gravity Partials, Normalized Gravity, Gravity Gradient Torque and Magnetic Field: 
Derivation, Code and Data,” Tech. Rep. NASA Contractor Report 188243, 1993. 
18 Montenbruck, O. and Gill, E., Satellite Orbits: Models, Methods and Applications, Springer-Verlag, Netherlands, 
corrected 3rd printing 2005 ed., 2000. 
19 Standish, E. M., “JPL planetary and lunar ephemerides, DE405/LE405,” Jet Propulsion Laboratory Interoffice Mem-
orandum IOM 312F-98-048, Aug. 26 1998. 
20 Hoffman, D., A Set of C Utility Programs for Processing JPL Ephemeris Data, Johnson Space Center, 1998. 
21 Fujimoto, K., Leonard, J. M., McGranaghan, R. M., Parker, J. S., Anderson, R. L., and Born, G. H., “Simulating the 
LiAISON Navigation Concept in a GEO + Earth-Moon Halo Constellation,” 23rd International Symposium on Space 
Flight Dynamics, Pasadena, CA, October 29 – November 2, 2012. 
22 Crassidis, J. L., and Junkins, J. L., Optimal Estimation of Dynamic Systems, Chapman and Hall/CRC, Boca Raton, 
FL, 2004. 
23 Taylor, J., “The Cramer-Rao estimation error lower bound computation for deterministic nonlinear systems,” IEEE 
Transactions on Automatic Control, Vol. 24, No. 2, 1979, pp. 343{344. 
24 Kerr, T. H., “Status of CR-like lower bounds for nonlinear filtering,” IEEE Transactions on Aerospace and Electron-
ic Systems, Vol. 25, No. 5, 1989, pp. 590-601. 
25 Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Gunter, B., Kang, Z., Nagel, P., Pastor, R., 
Pekker, T., Poole, S., and Wang, F., “GGM02 - An Improved Earth Gravity Field Model from GRACE,” Journal of 
Geodesy, Vol. 79, No. 8, 2005, pp. 467-478. 
26 Konopliv, A., S. W. Asmar, E. Carranza, W. L. Sjogren, and D. Yuan, “Recent Gravity Models as a Result of the 
Lunar Prospector Mission,” Icarus, Volume 150, 2001, pp. 1–18. 
27 Hill, K. and Jones, B. A., TurboProp Version 4.0, Colorado Center for Astrodynamics Research, May 2009. 

 

 


