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Introduction Preprocessing of  
GRAIL Gravity Science Measurements (1/2) 

▪ Objective: Transform GRAIL inter-satellite Ka-band range 
measurements into instantaneous  center-of-mass to center- 
of-mass Euclidean inter-satellite range in the Solar System 
Barycentric Coordinate Frame 

▪ Ka-band transformations depend on spacecraft 
ephemerides, and Orbit Determination (OD) accuracy is 
limited by knowledge of lunar gravity 
• Lunar gravity of deep far side nearly unknown 
• Pre-GRAIL lunar gravity fields cannot provide required 

transformation accuracy – 1 µm threshold 
• Requires bootstrapping using GRAIL measurements to improve 

transformations and lunar gravity field 
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Introduction Preprocessing of  
GRAIL Gravity Science Measurements (2/2) 

▪ Inter-satellite ranging system based on GRACE mission 
• GRAIL does not have GPS for timing and orbit determination 
• GRAIL includes a dedicated inter-satellite S-band ranging Time 

Transfer System (TTS) to meet science clock alignment 
requirements. Ka-band inter-satellite range measurement accuracy 
depends strongly on science clock alignment stability. 

• DSN tracking used for orbit determination and absolute timing 

▪ Transformation of inter-satellite Ka-range measurements 
requires additional measurements with transformations that 
also depend on the accuracy of spacecraft ephemerides  
• Timing measurements, general relativity modeling 
• DSN tracking data (includes Ultra Stable Oscillator frequency data) 
• Ka-boresight vector calibration maneuver measurements 
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Bootstrapping Strategy 

▪ Include inter-satellite range-rate measurements in the orbit 
determination (OD) process to reduce relative orbit error.  
• Immediately, relative error for pre-GRAIL gravity fields decreases to 

3 m level which reduces the Time Of Flight correction error to ~2 µm 

▪ Bootstrapping steps: 
1) Transform gravity science measurements using latest OD solution 
2) Update gravity field and estimate absolute time tag errors for inter-

satellite Ka-range measurements 
3) Update Ka-boresight vector 
4) Redo OD with latest gravity field 

▪ Continue bootstrapping until convergence 
 

▪ Pre-flight simulation used to validate bootstrapping strategy  
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Bootstrapping Simulation 
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Simulation Results (1/2) 
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Simulation Results (2/2) 
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Ka-Boresight Vector Error Ka-range Time Tag Error 
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Flight Results 

▪ Bootstrapping required increasing the resolution of the 
estimated gravity field at each iteration to fit low altitude data 
• In primary mission orbital altitude above the lunar surface varied 

from 30 to 100 km (extended mission 2 to 40 km) 

▪ Bootstrapping has nearly converged but higher resolution 
gravity field of combined primary and extended mission data 
will be used to confirm convergence. 

▪ DSN tracking, Ka range-rate residuals and spacecraft 
ephemerides improve with each bootstrapping step 
(Fahnestock paper AAS 13-271) 

▪ Correlation of recovered lunar gravity field with LRO lunar 
topography improves at each bootstrapping step.          
(Park paper AAS 13-272) 
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Flight Results (Ka-Boresight Vector Recovery) 
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Recovered Ka-range 
Residual vs Computed 

Evolution of Recovered 
Ka-range Residuals 
during Bootstrapping 

(Primary Mission Data) 
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Summary 

▪ Orbit Determination is a pivotal step in the bootstrapping 
process because most GRAIL science data transformations 
depend on spacecraft ephemerides  

▪ The basic strategy used in the bootstrapping process was 
validated via simulation 

▪ During flight the bootstrapping process required higher 
resolution estimated gravity fields at each iteration to fit low 
altitude data  

▪ The bootstrapping process has converged for the primary 
mission, but further bootstrapping is needed for the 
extended mission 
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