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THRUST DIRECTION OPTIMIZATION: SATISFYING DAWN’S
ATTITUDE AGILITY CONSTRAINTS

Gregory J. Whiffen∗

The science objective of NASA’s Dawn Discovery mission is to explore the giant
asteroid Vesta and the dwarf planet Ceres, the two largest members of the main as-
teroid belt.1 Dawn successfully completed its orbital mission at Vesta. The Dawn
spacecraft has complex, difficult to quantify, and in some cases severe limitations
on its attitude agility.2 The low-thrust transfers between science orbits at Vesta re-
quired very complex time varying thrust directions due to the strong and complex
gravity and various science objectives. Traditional low-thrust design objectives
(like minimum ∆V or minimum transfer time) often result in thrust direction time
evolutions that cannot be accommodated with the attitude control system available
on Dawn. This paper presents several new optimal control objectives, collectively
called thrust direction optimization that were developed and turned out to be es-
sential to the successful navigation of Dawn at Vesta.

INTRODUCTION

The Dawn spacecraft has two long solar arrays which together span 20 meters (see Figure 1.) The
solar arrays provide power for the spacecraft including three ion thrusters. The arrays are sized to
allow both the spacecraft bus and one ion thruster to operate at heliocentric distances approaching
3 AU at Ceres. The long arrays result in a large moment of inertia along axes orthogonal to the
arrays. The attitude of the spacecraft for any given thrust direction is determined by an algorithm

Figure 1. The Dawn spacecraft showing the fully deployed solar array. The ion
thrusters are located under (-z direction) the spacecraft in this view.
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called ”power steering2”. The purpose of the power steering algorithm is to always maximize the
solar array power output for spacecraft operations. Power steering requires the attitude to be chosen
so that the solar array surface is exactly orthogonal to the Sun for any thrust or instrument pointing
direction. This is accomplished by rotating the spacecraft around the chosen thrust or instrument
direction. For example, when thrusting using the ion thruster pointing in the -Z axis direction, this
amounts to a rotation about the Z axis. This rotation is complete when the Y axis (solar array axis)
is orthogonal to the Sun line. The solar array surface can then be made orthogonal to the Sun line
by rotating the arrays relative to the spacecraft about the y axis (see Figure 1 for a definition of the
axes).

The power steering algorithm has two poles in attitude space that can require arbitrarily large
attitude angular accelerations and rates. For thrusting, the two poles correspond to thrusting in the
Sun or anti-Sun direction. If a thrust profile requires thrusting to move near a pole then a rapid,
nearly 180 degree flip is required by the solar array. This flip is a rotation around the chosen
direction (thrust direction) and is orthogonal to the solar array (Y axis). Rotations around any axis
orthogonal to the solar array is associated with the highest moment of inertia of the spacecraft.

Dawn’s attitude is controlled during ion thrusting by thrust vectoring (this controls the two axes
perpendicular to the thrust direction) and by reaction wheels or hydrazine thrusters (this controls the
roll around the thrust direction). Thrust Vector Control or TVC is achieved by gimbals on the ion
thrusters that have a maximum excursion of about 5 degrees. A steering torque is created by using
the gimbals to thrust through points away from the center of mass. The gentle thrust provided by
Dawn’s ion thrusters (on the order of 50 [mN] for the 1000 [kg] spacecraft) and the small gimbal
excursion (< 5 degrees) provide little torque and hence limited attitude agility. The limited agility
combined with the power steering algorithm results in the Dawn spacecraft not being able to keep up
with many potential thrust profiles. The agility constraints become severely limiting when thrusting
or pointing near the Sun and anti-Sun directions.

Often two separately flyable thrust profiles become un-flyable if the spacecraft cannot move
through the intermediate attitudes required during the coasting between each maneuver. This com-
monly occurred when the first maneuver ends near the Sun or anti-Sun direction and the second
maneuver starts in a thrust direction on the opposite side of the Sun or anti-Sun direction and there
is little time between the maneuvers. When the spacecraft is not thrusting the attitude was controlled
either with reaction wheels or hydrazine thrusters.

The actual agility limitations are difficult to predict2 in part because the momentum state of the
spacecraft (reaction wheel rates) can not be exactly known or even approximately predicted until a
momentum management plan is developed for the thrust profile in question. This is a chicken and
egg problem. The agility constraints are therefor not analytic and cannot be directly incorporated
into methods to design thrust profiles for orbital transfers. The feasibility of any given thrust profile
is best predicted by a Monte Carlo analysis of possible momentum management plans and reaction
wheel momentum states.2 Despite the fact the agility constraints are non-analytic, general rules
can be used to modify the thrusting directions to reduce the agility requirements. Moving thrusting
away from the Sun or anti-Sun direction and/or reducing the time variation of the thrust direction
will both obviously improve the likelihood of meeting agility constraints. However, providing the
same angular distance from the Sun or anti-Sun directions and thrust direction rates will in some
cases work and in others it will not work. This is a result of the interplay of the history of reaction
wheel momentum build up and spacecraft body momentum.
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Given the difficulty in quantifying the agility constraints, it is necessary to have the ability to shift
the thrusting directions and change the thrust directions rates in various ways and test the resulting
thrust profiles for feasibility using a Monte Carlo analysis. Of course, the purpose of the maneuver
(state targeting) has to be preserved. If a minimum thrust-on time (or propellant optimal) maneuver
is found to violate agility constraints, then any acceptable thrust profile will require thrusting in
non-time-optimal or mass-optimal directions and therefore will require more thruster on time. The
extra thruster on time is called “slack” in this investigation. A goal is to reduce the slack needed to
satisfy spacecraft agility constraints.

A successful maneuver design must employ “slack” thrusting in a way that both achieves the re-
quired state target and meets agility constraints. One agility requirement is that both thrust directions
and rates do not change discontinuously or too rapidly: this is the “slow-continuity” requirement.
The slow-continuity requirement rules out maneuver design approaches that employ hard constraints
on thrusting directions because hard constraints result in very rapid attitude accelerations when the
constraint becomes active or inactive. Further, hard constraints often result in attitude discontinu-
ities when thrusting “jumps” over the attitude directions that are excluded by the constraint. What
is needed is design optimization objectives that achieve slow-continuity, avoid the attitude poles in
a smooth way, and meet the maneuver state targets while using slack thrusting efficiently.

Time-optimal and propellant-optimal maneuvers frequently violate agility constraints because
these objectives are blind to the attitude poles where constraints are most severe. They can also fail
far from the attitude poles when the required attitude rates or accelerations are too high. Several
new optimal control objectives, collectively called thrust direction optimization, were developed
to overcome the shortcomings of time- and mass-optimal maneuvers. The new objectives are de-
scribed in this paper and were employed extensively and successfully during Dawn’s year long
orbital operations at Vesta.

The software used to design all of the maneuvers for the Dawn spacecraft is a tool set called
Mystic.3 The optimization algorithm used in Mystic is the Static Dynamic optimal Control or
SDC algorithm.4 The SDC algorithm is based on Bellman’s Principle of Optimality.5 Mystic
was originally designed for low-thrust (typically electric propulsion) mission design but has been
extended to provide a very high-fidelity maneuver design capability for mission operations.

THRUST DIRECTION OPTIMIZATION

Mystic’s main function is low-thrust trajectory optimization. The optimization variables include
thrust as a function of time, launch or start date, flight time (or equivalently arrival date), and up to
seven initial condition parameters, including the initial spacecraft mass. The formulation also allows
for state variables or indirectly controlled variables. The general problem that Mystic’s optimization
algorithm solves is find the optimal control v∗ and w∗ such that the objective J(v, w) is minimized:

J∗ ≡ J(v∗, w∗) = minv(t),wJ(v, w). (1)

The SDC algorithm recognizes two types of controls vectors. The first, w, is the so-called “static
control” or list of decisions that are not time dependent. The second type of control, v(t), is the
“dynamic control” or list of controls that are functions of time. The definition of the objective is:

J(v, w) =

∫ tf=f(w)

to=w1

F (x(t), v(t), w, t)dt+

M∑
i=1

Hi(x(ti), v(ti), w, ti) +G(x(tf ), v(tf ), w, tf ),

(2)
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where x(t) represents the system state variables subject to a state equation of the form

dx(t)

dt
= T (x(t), v(t), w, t), (3)

and an initial condition of the form
x(t0) = Γ(w). (4)

The trajectory start time, to, is the first component of the static control variable vector w and the
trajectory end time tf is a function f of the static control vector (typically a sum of a subset of the
components of w). The functions F , H , and G are user selectable, once continuously differentiable
objective functions. The function T represents the trajectory equations of motion including pro-
pellant mass flow. The function Γ returns the initial system state as a function of the static control
variables. In the current implementation for Dawn, the dynamic control vector v(t) is the three
components of ion propulsion thrust as a function of time. The “static” control parameters w are
defined to be the start time to, the initial spacecraft position, velocity, mass, and the time of flight for
each trajectory phase. For most maneuver designs, the spacecraft initial state is fixed (not subject
to optimization). The initial state used to design maneuvers is the current orbit determination and
estimated spacecraft mass. Therefore the function Γ is a constant vector with no dependence on the
static control w.

The equation used to describe the time evolution of the state T includes ion thruster mass flow,
attitude control thruster mass flow, multi-body gravity, gravity harmonics, thrust, and solar radiation
pressure. Both linear and non-linear constraints are also used on the variables x(t), v(t), and w to
account for thruster operational limitations, transfer targets, and power available constraints. For
example, a commonly used six-state target has the form

x(tf ) =



target x position
target y position
target z position
target x velocity
target y velocity
target z velocity


(5)

The objective J in equation (2) that was initially used to design transfer thrusting at Vesta was

J = G(x(tf ), uN , w, tf ) = min [K − x7(tf )]2 . (6)

The functions F and Hi in equation (2) were set to 0. The scaler constant K was selected to be
the spacecraft initial mass before any maneuvering. The objective specified by equation (6) is to
minimize the square of the difference between the spacecraft’s start massK = x7(t0) and its ending
mass x7(tf ). The objective (6) is equivalent to minimizing propellant consumption. The operational
transfer maneuver designs at Vesta involved a fixed flight time for each designed maneuver, therefore
the solutions can be described as ”mass optimal” as opposed to being ”time-optimal” or minimum
time transfers.

It is important to note that the thrust vector variations required to achieve the necessary state
targets were very complex. Simple spiral control laws, such as thrust parallel or anti-parallel to the
Vesta relative velocity direction were not adequate. Figure 2 illustrates a thrust vector profile that
was optimized and executed during a portion of a transfer between the medium and low-altitude

4



Figure 2. An example of the complex evolution of the thrust direction required for
transfers around Vesta. Vesta resides at the center of the illustration. The spacecraft
trajectory is indicated in blue and the thrust acceleration direction is indicated by
yellow arrows. The view is inertial and is above the north pole of Vesta.

science orbits at Vesta. The strong and highly non-spherical gravity of Vesta combined with precise
science orbit state targets and trajectory safety constraints resulted in complex maneuvers, as is
evident in Figure 2. Generally, the closer Dawn got to Vesta, the more complex and dynamic
the thrust direction evolution became. The maneuver illustrated in Figure 2 is an optimal control
solution for the Optimal Control Problem or OCP outlined above.

Mass optimal solutions obtained by solving the OCP described above typically have smoothly
varying thrust directions. Smooth variation is desirable and necessary for flight system feasibility.
However, mass optimal solutions do not necessarily avoid the attitude poles and/or high attitude
rates that the flight system cannot achieve. Direct constraints on thrust directions, for example, a
cone angle exclusion constraint around the attitude poles result in attitude rate discontinuities and
often high rates occur when the constraints are active.

An undesirable aspect of mass optimal solutions is that for many spiraling transfer problems, the
thruster is cycled on and off one or more times per revolution. It is generally true that it is mass
optimal to coast during times that correspond to very high attitude (thrust direction) rates which is
good. However, this often moves the agility violation from the thrusting portion of the maneuver
to the coasting portion of the maneuver. As a result, even when the spacecraft can keep up with
the attitude requirements for the individual thrust arcs comprising a mass optimal solution, the
spacecraft could not achieve attitude changes required during the optimal coasting periods between
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active thrust arcs. Formulating constraints that account for attitude when not thrusting is not possible
in a “three degree” of freedom formulation. The three degrees of freedom are the thrust vector
components. When the thrust magnitude is zero (during optimal or forced coasting) the attitude is
obviously not constrainable given a three degree of freedom OCP definition. More variables that
explicitly define attitude need to be defined to constrain attitude during coasting. Formulations that
track spacecraft attitude as state variables are called “six degree of freedom” formulations.

The development of a six degree of freedom formulation, including three attitude angles as part of
the spacecraft state, can account for attitude even when not thrusting and provides a way to control
attitude rates. However, the complexity of the formulation leads to the difficulty of constructing use-
ful initial guesses. Specifically, the enormous increase in the resulting local minima from spacecraft
revolutions overwhelms the advantage of the 6 degree of freedom approach for this application. As
a result, a near feasible solution would need to be known before attempting to solve the optimal
control problem. This was determined to be impractical given the maneuver complexity and the
short design periods allowed during operations.

An approach that provided limited success in designing maneuvers at Vesta while using the mass
optimal objective (6) involved having the designer introduce forced coasting during periods when
the mass optimal solution had either high rates or ventured close to an attitude pole. As long as the
introduced coast was long enough, there would be enough time to move between arbitrary attitudes
during the coast. Forcing coasting in places where it is optimal to thrust most often increases attitude
rates during thrusting at other times. This may be acceptable if the higher rates occur further from
an attitude pole. The approach was found to be too unreliable and time consuming to be applied in
general.

As a result, a new formulation was sought that would provide the maneuver designer with the
ability to satisfy attitude agility constraints while not requiring sophisticated initial guesses for the
OCP. Not requiring sophisticated initial guesses is equivalent to having a formulation that does not
result in a large number of superfluous local minima. Specifically, the new OCP formulation must
be a three degree of freedom formulation in order to avoid the attitude revolution local minima
of six-degree formulations. The new OCP formulation or objectives need to provide control over
thrust direction (to avoid attitude poles), and attitude rates and accelerations in general. A further
requirement is that the resulting solutions exhibit slow-continuity of thrust directions - a feature of
well behaved mass optimal solutions. The new formulation that was developed to achieve these
objectives is called “Direction Optimization.”

General Formulation of Direction Objectives

A thrust profile is said to be “Direction Optimal” if the thrust profile is closest to, or furthest
from, a thrust direction target and the thrust profile meets all constraints and achieves the required
state targets. The direction target can be either inertially fixed for the duration of the transfer or
the direction can be a function of time. The direction objective can be applied to part or all of the
transfer. Direction objectives can be used in combination with each other and with mass objectives
to create a pareto optimal front. The general form of a direction ”attractor” objective is

minv,w

∫
t∈τ

[
1− v̂(t) · D̂(x(t), v(t), w, t)

]2
dt, (7)

where v̂(t) is a unit vector pointing in the same direction as the thrust acceleration and D̂ is unit
vector function that provides the target thrust direction at time t. The set of times τ need not be
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continuous. The general form of a direction ”pole repulsor” objective is

minv,w

∫
t∈τ

[
1− (v̂(t)× Ŝ(x(t), v(t), w, t)) · (v̂(t)× Ŝ(x(t), v(t), w, t))

]n
dt, (8)

where Ŝ is unit vector function that provides a pole that is to be avoided in thrust direction space
and n is a positive integer. Again, the set of times τ need not be continuous. It is easy to construct
many other general types of thrust direction objectives including a direction repulsor objective and
a pole attractor objective.

Numerically Tested Direction Objectives

Six different specific thrust direction objectives were developed and tested. Since, at the outset, it
was not at all clear which objective or objectives would be most useful, several different objectives
were simultaneously constructed and tested. Each specific objective that was built had a plausible
hypothesis of success associated with it. The first objective uses a single inertial direction attractor
target

minv,w

∫
t∈τ

[
1− v̂(t) · D̂

]2
dt, (9)

where D̂ is a fixed inertial direction. This objective is the simplest meaningful type of direction
objective. It was hypothesized that thrusting could be drawn away from the Sun and anti-Sun
direction attitude poles if the inertial direction target is chosen far from these directions. The second
objective is a generalization of the first. The second objective uses a list of inertial directions (time
dependence) as an attractor target

minv,w

∫
t∈τ

[
1− v̂(t) · D̂(t)

]2
dt, (10)

where D̂(t) is an inertial direction that depends only on time - not state or any other variable.

The third thrust direction objective uses the spacecraft-central body (Vesta) relative velocity vec-
tor as an attractor target,

minv,w

∫
t∈τ

[
1− v̂(t) · V̂ (x(t), t)

]2
dt, (11)

where V̂ is the spacecraft-central body relative velocity unit vector. The fourth objective is the same
as the third objective (11) except that the target direction is the anti-velocity direction

minv,w

∫
t∈τ

[
1 + v̂(t) · V̂ (x(t), t)

]2
dt. (12)

The objectives (11) and (12) are useful during maneuvers that are spiraling out or in respectively.
The bulk of the thrusting is expected to occur near the relative velocity or anti-velocity directions
during spiraling in or out from a body. It was hypothesized that applying these objectives with
sufficient slack would dampen troublesome, out of plane and radial thrusting. Specifically, these
objectives should tend to keep the minimum angle between the thrust directions and the attitude
poles (Sun and anti-Sun direction) close to the orbit β angle. The orbit β angle is the angle between
the orbital plane and the Sun direction.
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The fifth thrust direction objective is a fixed inertial pole repulsor objective of the form

minv,w

∫
t∈τ

[
1− (v̂(t)× Ŝ) · (v̂(t)× Ŝ)

]n
dt, (13)

where Ŝ is fixed inertial direction unit vector defining the attitude pole to be avoided. It was hypoth-
esized that this objective could be applied to avoid thrusting near the Sun and anti-Sun directions by
defining the unit vector Ŝ to be the Sun direction. Note that the Sun direction varied little during any
single maneuver at Vesta so using a fixed inertial direction would suffice. The integer n in objective
(13) can be varied to make the objective influence strong over a small range of angles (when n is
large) or weaker and longer ranged (when n is small.)

The sixth thrust direction objective is an attractor target specified as a fixed direction in a rotating
frame called the Radial-Normal-Transverse or RTN frame. This objective turned out to be the most
useful for Vesta operations. The RTN frame is defined based on the position and velocity of the
spacecraft relative to the center of mass of the central body (Vesta). The radial axis is parallel to
the central body - spacecraft direction. The transverse axis is the local horizontal direction of the
spacecraft relative to the central body that is closest to the relative velocity of the spacecraft with
respect to the body. Another way to define the transverse axis is the direction that is orthogonal to
the radial direction that is closest to the spacecraft - central body relative velocity. The normal axis
completes the right handed coordinate system. The RTN frame is non-inertial, rotating once every
orbit. The rotation rate is not constant for elliptical orbits and orbits around non-spherical bodies
like Vesta. A fixed direction in the RTN frame is therefore time varying in an inertial frame. The
RTN attractor objective is

minv,w

∫
t∈τ

[
1 + v̂(t) · (ar̂ + bt̂+ cn̂)

]2
dt. (14)

The radial, transverse, and normal unit vector directions are defined as

r̂ = (Xsc −Xbody)/||Xsc −Xbody||,

t̂ = (V̂ − (r̂ · V̂ )r̂)/||V̂ − (r̂ · V̂ )r̂||,

and
n̂ = r̂ × t̂,

where the body relative spacecraft velocity is defined as

V̂ = (Vsc − Vbody)/||Vsc − Vbody||.

The variables Xsc and Vsc are the spacecraft position and velocity in an inertial frame and Xbody

and Vbody are the central bodies position and velocity in the same inertial frame.

The constants, a, b, and c in equation (14) are chosen to define the fixed direction objective in the
RTN frame. Selection of a, b, and c are subject to the constraint ||ar̂+ bt̂+ cn̂|| = 1 or equivalently
a2 + b2 + c2 = 1. Since there are only two degrees of freedom in specifying the direction, it is
convenient to specify the objective direction as a right ascension angle and a declination angle in
the RTN frame. The direction ar̂ + bt̂ + cn̂ clearly has fairly complex dependence on both the
spacecraft state and time. This made the derivation of the analytic first and second derivatives of
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equation (14) considerably more difficult compared to the objectives (9) - (13). Analytic expressions
for derivatives are always preferable, whenever practical, to improve optimization robustness.

The objectives (11) - (14) all have an interesting property that the objectives (9) and (10) do
not have. Specifically, the direction targets in the former are non-trivial, explicit functions of the
spacecraft state. As a result, both a direct (control variable) dependance through the thrust vector
v(t) and an indirect state variable x(t) dependence will influence the objective value. This means
that there generally exists advantages to both alter the thrust directions to directly minimize the
objective and also alter thrust directions at earlier times to change the state at later times to further
minimize the objective. For long transfers the indirect influence could result in significant changes
in the intermediate trajectory states depending on the objective used. This property can be useful
because the optimal control problem solution will now favor placing the spacecraft in future states
where thrust direction evolution is presumably more benign (assuming the direction objective is
chosen well).

EXAMPLES OF DIRECTION OPTIMAL SOLUTIONS

Direction objectives are properly formulated when a fixed amount of thrusting time is selected
in advance. Thrusting time is not a control, rather it is a parameter that is adjusted as needed to
achieve the desired thrust direction deviation. The selected amount of thrusting time must be equal
to or be greater than the amount of thrusting time required for the mass optimal solution, otherwise
the problem will obviously be infeasible (i.e. the end state target will not be reachable.) The time

Figure 3. The basis of the numerical examples is a spiral-in maneuver used during
Dawn’s Vesta orbital operations. The average orbital radius decreases from 640 [km]
to 580 [km] during the spiral-in.

in excess of the mass optimal thrusting time is called slack time. The more slack time, the more
freedom the thrust profile has to react to the thrust direction objective. Further, it is necessary
to employ a non-zero thrust magnitude constraint to avoid direction degeneracy when the thrust
magnitude approaches zero during optimal coasting times. When the thrust magnitude numerically
approaches zero during optimal coasting, the thrust direction will have a vanishing effect on the
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trajectory state evolution - therefore the minuscule thrust will exactly line up with the objective.
This leads to numerical problems and less effective control of the thrust direction when the thrust
magnitude is large. A properly formulated direction optimization problem does not have any optimal
coasting as a result of a constraint of the form

||v(t)|| = TM ∀t ∈ τ (15)

where TM is the fixed “on” magnitude of thrust. All of the numerical examples provided in this
paper satisfy the constraint (15) during all given thrust times. The numerical examples presented in
this paper are based on the Vesta spiral-in maneuver plotted in Figure 3. The spacecraft revolves
around Vesta 7 times during the maneuver. The average orbital radius decreases from 640 [km]
to 580 [km]. The total flight time is 1.93 days. This example is drawn from part of a designed
maneuver used during Vesta operations in mid-November 2011. The trajectory begins at a fixed
position and velocity based on orbit determination and is constrained to end on a given position and
velocity. The ending state is determined by the transfer reference trajectory at that epoch.

Figure 4. The mass optimal thrust magnitude and inertial thrust components in the
Earth Mean Orbit and equinox of the J2000 epoch frame or EMO-2000 frame for the
Vesta spiral-in maneuver example.

The mass optimal solution to the maneuver design requires 1.3932 total days of thrusting time.
The mass optimal solution consists of 7 individual thrust arcs with varying amounts of optimal
coasting in between - see Figure 4. The large number of optimal coasting arcs result in an unde-
sirably high number of engine on/off cycles. Forcing coasting at strategic times during the transfer
results in fewer separate thrust arcs but somewhat longer total thrust times and often higher attitude
rates. Direction optimization provides an alternative way to reduce thruster on/off cycles by forcing
thrusting via the constraint (15) while avoiding high rates when the direction objective is chosen
correctly. The gravity of Vesta is modeled using a harmonic field of order 8. The Sun and plan-
ets were modeled as point masses. The capability of the ion propulsion system at the time of this
maneuver was 57 [mN] and the spacecraft mass was 952 [kg].

The thrust directions obtained from solving the mass-optimal problem are illustrated in Figure
5. The mass-optimal thrust directions plotted on the unit sphere are plotted in two different frames
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Figure 5. The mass-optimal solution thrust directions plotted on the unit sphere in
the inertial Earth Mean Orbit and equinox of the J2000 epoch frame or EMO-2000
frame (on the left) and in the Radial, Transverse, Normal, or RTN rotating frame on
the right.

in Figure 5. The unit sphere on the left is the Earth Mean Orbit and equinox of the J2000 epoch
frame (EMO-2000 frame). The unit sphere on the right is the RTN rotating frame. Most of the
thrusting is in the negative “T” axis direction which corresponds approximately to thrusting in the
anti-relative velocity direction as expected for a spiral-in maneuver. Since the maneuver is aiming
for a particular position and velocity at the end, the thrusting is more complex than exactly thrusting
in the anti-relative velocity direction. The Sun and anti-Sun directions are indicated by red “+” and
red dot symbols in Figure 5. The Sun and anti-Sun directions wrap around the unit sphere at two
equal and opposite latitudes in the rotating RTN frame.

Examples of Inertially Fixed Direction Objectives

The thrust directions of the mass optimal solution to the Vesta spriral-in maneuver design problem
are compared to a fixed direction objective solution in Figure 6. The mass-optimal thrust directions

Figure 6. Two views of the thrust directions for the mass-optimal solution (blue)
and an inertial direction optimal solutions (green) plotted on the unit sphere in the
EMO-2000 frame. The inertial direction target D̂ is marked with a black “X” and
labeled.
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are plotted in blue on the unit sphere in the inertial EMO-2000 frame. If we introduce a fixed direc-
tion constraint of the form of equation (9) and provide 50 minutes of slack thrusting time relative
to the mass-optimal solution then the thrusting shifts to the green trace in Figure 6. All thrusting
time during the direction optimization occurs during a single thrust arc that ends at the end of the
trajectory. This means all coasting was forced to occur at the start of the trajectory. The direction
objective used is indicated by a black “X” in Figure 6. The direction target D̂ has a right ascension
of -20o and a declination of +25o in the EMO-2000 frame. The optimal solutions presented in Fig-
ure 6 satisfy both the first and second order conditions of optimality. Several common behaviors
of direction optimal solutions are evident in Figure 6. First, overall, the thrusting directions have
moved closer to the target, however some thrust has moved further away as is evident on the left-
hand unit sphere in Figure 6. Where thrusting has moved away from the target, the direction rate
has increased. The direction rate is indicated by the spacing of the points that mark equal amounts
of time along the thrust direction traces in Figure 6. Since the objective (9) is an integral over time,
spending a short amount of time (with high angular rates) is inexpensive and advantageous if lower
rate thrusting can be moved closer to the target D̂. Recognizing these behaviors allows the analyst
to better select a direction target to achieve the desired goals.

The effect of increasing the slack thrusting time is illustrated in Figure 7. In this example, the
direction target D̂ is held constant at a right ascension of -20o and a declination of 0o in the EMO-
2000 frame and the slack is 0, 50, or 116 minutes. “Zero minutes of slack” is equivalent to the mass-
optimal solution. Increasing the amount of slack does not necessarily decrease the thrust direction

Figure 7. Two views of the thrust directions for the mass-optimal solution or zero
slack solution (blue), an inertial direction optimal solution with 50 minutes of slack
(green), and an inertial direction optimal solution with 116 minutes of slack (magenta)
plotted on the EMO-2000 frame unit sphere. The inertial direction target D̂ is marked
with a black “X” and labeled.

angular rate as is evident in the highest rates occurring in the magenta trace or 116 minutes of slack
case in Figure 7. High rates are indicated by large spacing between the dots on each thrust direction
trace. The thrusting that is most distant from the target is moved preferentially toward the target
with increasing slack (see the right-hand view in Figure 7.) This is a result of the quadratic aspect
of objective equation (9). Thrusting that occurs twice as far from the target D̂ is four times as
expensive. Since the thrusting in this example approximately follows great circles in any inertial
frame, a single fixed inertial target is a poor type of objective to achieve attitude agility constraints.
The thrusting pattern in a rotating frame like the RTN frame is generally more compact (recall Figure
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5.) More compact patterns behave in simpler ways when direction optimization is employed.

Examples of Polar Repulsor Direction Objectives

It was hypothesized that a pole repulsor type objective could be applied to avoid thrusting near
the Sun and anti-Sun directions by defining the unit vector Ŝ to be the Sun direction. However,
the pole repulsor objective in an inertial frame results in solutions that often increase rates near the
pole due to the time-integrated nature of the objective equation (13). Not surprisingly, pole repulsor
solutions exhibit similar, but opposite behaviors exhibited by inertial attractors. Figure 8 illustrates
the result of the application of a pole repulsor objective of the form of objective equation (13). The
pole Ŝ is defined by the right ascension of -20o and a declination of 0o in the EMO-2000 frame. The
Pole is near the Sun, anti-Sun line. The parameter n in objective equation (13) was selected to be
2. The pole repulsor solution succeeds in moving the thrusting further away from both the Sun and

Figure 8. Two views of the thrust directions for the mass-optimal solution or zero
slack solution (blue) and a pole repulsor optimal solution with 50 minutes of slack
(green) plotted on the EMO-2000 frame unit sphere. The pole direction Ŝ is indicated
by a black line passing through the sphere.

anti-Sun directions (compare the blue and green thrust direction traces in Figure 8). A more subtle
effect is that where the thrusting has deviated the most from the mass optimal solution, the direction
rate has increased the most. This may or may not be acceptable from an attitude agility standpoint.
On one hand, the spacecraft is more agile further from the Sun direction, but on the other hand, the
spacecraft is required to rotate more quickly. During Vesta operation, the pole repulsor objective
was used only very occasionally. By far the most effective objective for satisfying Dawn’s attitude
agility constraints was a fixed direction target in the rotating RTN frame.

Example of RTN Frame Direction Objectives

An example of a mass optimal versus a direction optimal thrust direction evolution in the RTN
frame is provided in Figure 9. The mass optimal solution (blue) cannot be flown by Dawn as a result
of attitude rates when thrusting near the anti-Sun direction. The anti-Sun direction in the rotating
RTN frame corresponds to the southern latitude red band on the unit sphere in Figure 9. A RTN
frame direction objective equation (14) was placed high in the northern hemisphere to draw the
thrusting away from the anti-Sun direction. The target was placed at a right ascension of -110o and
a declination of +45o in the RTN frame. The thrust direction solution is plotted in green in Figure
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Figure 9. An example of a mass optimal versus a direction optimal thrust direction
evolution in the Radial - Transverse - Normal or ”RTN” frame. The mass optimal
solution is indicated in blue and the direction optimal solution is indicated in green.
The Sun and anti-Sun directions are indicated in red.

9. The RTN direction target ar̂ + bt̂ + cn̂ location is labeled and indicated by a black star on the
northern hemisphere of the unit sphere in Figure 9. The direction objective successfully moved the
thrusting above the anti-Sun direction. It may appear that more thrusting is occurring near the Sun
direction in the direction optimal solution, but this is not the case. The phasing of the Sun and thrust
directions is such that thrusting still avoids the Sun direction. The RTN rotating frame plots do not
provide this phasing information. Inspection of inertial frame thrust direction plots demonstrates
the improvement in avoiding the anti-Sun direction - see the left-hand unit sphere in Figure 10. The
right-hand plot in Figure 10 indicates that the thrusting near the Sun direction is not significantly
altered by the direction optimal solution. The direction optimal solution is flyable by the Dawn
spacecraft. Flight feasibility was achieved with only 50 minutes of slack thrusting in this example.
The total mass-optimal thrust time was 2,031 minutes so the slack represents an increase of only
2.5%.

In general, targeting in the RTN frame is more successful because spiral thrust directions are
usually more compact in this frame. When the initial mass-optimal thrusting is compact then its
reaction to thrust direction objectives is generally easier to predict.
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Figure 10. Two views of the thrust directions for the mass-optimal solution or zero
slack solution (blue) and a RTN direction optimal solution with 50 minutes of slack
(green) plotted on the EMO-2000 frame unit sphere.

CONCLUSION

Direction optimization was essential to the success of the Dawn Discovery mission’s Vesta orbital
operations. Flyable maneuvers were obtained in a timely manner as a result of the simplicity and
robustness of direction optimization formulations described in this paper. No demonstrated local
minima were found in direction optimal problems that did not have a corresponding mass-optimal
local minima. This result is very important compared to the likely large number of superfluous local
minima generated by a six-degree of freedom (full attitude modeling) spacecraft formulation. A lack
of troublesome local minima allows very simple initial guesses to initialize the SDC optimization
process. Typically, an initial guess consists of thrust parallel or anti-parallel to the Vesta relative
velocity. An initial guess trajectory did not need to end near the final required position and velocity.
The initial guess trajectory could even end on the side of Vesta opposite to the required position
target. Robust convergence was obtained for the direction objectives described here. The concept
of direction optimization may have applications outside of meeting attitude agility constraints. For
example, direction optimization may be useful for some close proximity formation flight problems
or for designing science acquisition during powered flight.
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NOMENCLATURE

t Time
J The numerical objective value (scaler)
J∗ The optimal objective value
v The dynamic control vector in the SDC formulation, function of time
w The static control vector in the SDC formulation
x The state vector in the SDC formulation, function of time
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x7 The seventh component of the state vector, spacecraft mass
v∗ The optimal dynamic control vector
w∗ The optimal static control vector
to, tf The beginning and ending trajectory epoch
F (x, v, w, t) The objective accumulation per time (scaler function)
f(w) The trajectory end epoch as a function of the static control
Hi(x, v, w, t) The objective accrued at a finite number of intermediate times ti (scaler function)
G(x, v, w, t) The portion of the objective accrued at the trajectory end time tf (scaler function)
T (x, v, w, t) The state transition equation: time rate of change of the state (scaler function)
Γ(w) The initial spacecraft state as a vector function of the static control
K A constant chosen to be the initial spacecraft mass
D̂ The target thrust direction for attractor type objectives
Ŝ A direction that defines the pole for pole repulsor type objectives
τ A subset of times during which a direction objective is applied
V̂ A unit vector in the direction of the spacecraft - central body relative velocity
Xsc, Xbody The spacecraft and central body positions in an inertial frame
Vsc, Vbody The spacecraft and central body velocities in an inertial frame
r̂ A unit vector in the body-spacecraft radial direction
t̂ A unit vector in the transverse direction (local horizontal in velocity direction)
n̂ a unit vector in the orbit normal direction
TM A fixed thrust magnitude
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