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Dawn’s first target:  Vesta 

• The asteroid Vesta is a 
massive, asymmetrical, highly 
oblate asteroid, located in the 
main asteroid belt. 

– Orbital period: 3.63 years 
– Rotational rate: 5.342 hours 
– GM: 17.28838 km3/sec2  
– Polar radius:  ~220 km 
– Equatorial radius: ~290 km 

 

Image credit: dawn.jpl.nasa.gov 
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Mission Trajectory 

Image credit: dawn.jpl.nasa.gov 
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Science Phases at Vesta 

HAMO and HAMO-2 

Example of Survey to HAMO transfer 



6 

Dawn Spacecraft 
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Attitude Control 
 

•Attitude Control System (ACS) 
– ACS provides three-axis stabilized control in any of four modes: 

• RCS mode:  
– uses the 6-thruster Reaction Control System to attitude control.   
– Y-axis control is unbalanced, with net delta-V along +X or –X axis 
– X-axis control is unbalanced, with net delta-V along +Z axis, and along +X or –X axis. 
– Z-axis control is balanced. 

• RWA mode: uses 3 of 4 Reaction Control Wheels.  Requires desats using the 
RCS every 1-3 days, with DV of 1-3 cm/s 

• Two Thrust Vector Control (TVC) Modes: 
– While IPS is operational, it gimbals the thrust vector to control and/or change attitude 

along two axes that are orthogonal to the thrust direction. 
– RCS-TVC: Uses RCS to control the axis that cannot be controlled by TVC. 
– RWA-TVC:  Uses RWA to control the axis that cannot be controlled by TVC. 
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Ion Propulsion System (IPS) 
• The Dawn IPS has three IPS thrusters. 

– all direct thrust within the spacecraft XZ frame (within the plane of this slide) 

• Each thrust is on 2-D controllable gimbal. 
– Allows the thrust to be directed through or around the spacecraft CG to minimize external torque 

or generate desired torque. 

• Each thruster supports 111 mission levels of discrete thrust magnitude,  
– ranging from 91mN (ML111) down to 18 mN (ML0) 

• As Dawn and Vesta moved away from the Sun during the Vesta encounter, available power for 
thrusting dropped from  2.0kW to 1.2kW, allowing thrust magnitudes of 76mN to 46mN. 
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Dynamics Models 
• For the Vesta OD, the following dynamic models were used: 

– Pointmass gravity  
– Vesta gravity harmonics 

• 4th degree/order in Survey, 8th degree/order in HAMO, 13th degree/order in LAMO 
– High fidelity attitude models 

• Interpolated quaternions from ACS prediction and from ACS telemetry 
– Finite burns for the IPS thrusters 

• Modeled in the Dawn body-fixed frame as an applied force over a finite time interval  
• One Finite Burn per IPS arc, with thrust level / mass flow changes modeled as a time series 

and thrust pointing modeled as a fixed direction relative to the Dawn body-fixed frame 
– Small burns, to model RCS thrusting 

• Predicted as impulsive delta-V predictions from ACS team 
• 1-minute/record granularity in playback telemetry 

– Polynomial accelerations 
• High frequency batches to to clean up time varying system noise. 

– Solar pressure 
• 3-plate model 
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Filter Models 
• A priori values for Vesta physical parameters based on a homogeneous Hubble model 

– Rescaled at each science phase based on statistics of independent 1-week OD solutions 
• A priori IPS values based on thrust level calibrations performed prior to Approach 

– A scale factor table is used to bookkeep multiplicative scale factors for each IPS thrust level 
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Measurement Fitting 
• Strong nonlinear signatures in measurement residuals due to propagated IPS 

thrusting errors and orbital motion about Vesta 
• Two methods used to minimize prefit amplitude: 

1. Feed forward latest IPS, gravity, and Vesta frame estimates as a priori values for the next OD 
2. Fit the data in smaller segments by incrementally advancing the data cutoff (see below) 

Intermediate Data Cutoff 

~150 Hz ~30 Hz 

Prefit Residuals Postfit Residuals 
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OD Interfaces 
• Predictions (left) delivered based on most recent sequence design 
• Telemetry records (right) replace predictions as events are executed on the spacecraft 

and transmitted to the ground 
– Automated scripts process the telemetry records into OD model inputs 

• OD deliverables include Vesta gravity and frame, IPS estimates, and trajectory products 
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Thrust build Schedule 
• As originally designed, there were 43 maneuver design cycles to be 

performed at Vesta, with design cycle lengths varying from 2 to 7 days. 
– Will later be referred to by sequence designations:   DL002 through DL044 
– 5 on Approach (DL002 to DL006) 
– 4 during Survey to HAMO transfer (DL007 through DL010) 
– 10 during HAMO to LAMO transfer (DL011 through DL020) 
– 10 during LAMO to  (DL021 through DL030) 
– 11 during LAMO to HAMO-2 (DL031 through DL041) 
– 3 on Departure (DL042 through DL044) 
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Maneuver Design Cycle 
 • Four OD Functions in Maneuver Design Cycle: 

1. Preliminary OD (to be used for preliminary thrust vector profile design) 
2. Final OD (to be used for final thrust vector profile design) 
3. Integration, verification, and delivery of a trajectory implementing the thrust vector profile design 
4. Verification of thrust command sequence and build of products for next OD cycle 
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IPS/RCS Execution Errors 
• During thrust cycles, the trajectory was dispersed from the reference target by modeling errors and 

execution errors 
– Modeling errors were due to the thrust design not modeling RCS (desat) events or the IPS Diode Mode (warmup) 
– Execution errors were due to RCS (desat) and IPS over-performance or under-performance in flight 

• Ellipsoid plot shows modeling errors (“IPS_SFF” from “Ref”) and execution errors (“Recon” from 
“IPS_SFF” at the DL032 interface state 

• In general, executions errors were below levels of modeling errors, indicated good performance 
prediction 
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Desat Bias Errors 
• Desat estimation can indicate biases in the SFF telemetry records. 
• Estimates of the Z-axis RCS corrections indicated an underprediction of 0.02 to 0.03 

mm/s in the SFF records delivered by telemetry.  
– Since each desat consisted of 10-15 records, this indicated desat over performance of 0.2-0.5 mm/s.  

• A Y-axis RCS bias of -0.04 to -0.06 mm/s per record indicated an error of 0.4-1.0 mm/s 
per desat 

– This is particularly noteworthy since it may indicate an RCS thruster misalignment of a few degrees. 

0.0 

0.0 
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Trajectory Reconstruction Accuracy 

• Intermediate trajectory reconstructions at LAMO compared to final LAMO reconstruction 
• Maximum error shown here is 15 meters, meeting project requirement of 20 meters (1-σ) 
• Three exceptions are two safe modes, and during DL022. 

• DL022 the only intermediate delivery at LAMO to merge radiometric and optical measurements 
• This will be discussed in later presentation. 
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Gravity Field Stability 
• To assess consistency of gravity field deliveries, each delivered gravity field during the 

HAMO to LAMO transfer was used to propagate the Dawn trajectory over LAMO 
• In comparison to the LAMO reconstruction, the HAMO-delivered gravity field would have 

only caused a maximum trajectory dispersion of 30km and 1.4 m/s during LAMO 
• All other delivered gravity fields would have dispersed the trajectory no more the 15 km, 

expect for the DL020 gravity field, which was solved with limited data after a safe mode 
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Vesta Frame Orientation Reconstruction 

• This set of consecutive week-long 
Radio-only solutions from LAMO 
(blue) orient the pole at 42.226º 
Dec and 309.033º RA with 
uncertainty on the order of 
±0.005° 

• This is within a millidegree of an 
estimate from Dawn Gravity 
Science 
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Conclusions 
• At Vesta, the OD team was able to provide the necessary support to engineer 

the Vesta Mission and help return more than enough data to exceed level-1 
requirements. 

• OD experienced many exciting moments during the Vesta mission, including: 
– Supporting recovery from five safings 
– Supporting the numerous three-day design cycles during the HAMO to LAMO 

transfer and the LAMO to HAMO-2 transfer 
– Providing late breaking determination of Vesta parameters to support design of 

upcoming science orbits 
• Vesta Pole orientation on pproach (results discussed in a later presentation) 
• Vesta gravity from 3000 km, applied to 950 km (results in later presentation) 
• Vesta gravity from 950 km, applied to 475 km (results in later presentation) 
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