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 Proposals to send humans to an orbit about the Earth-
Moon L2 point. 
 Such orbits are unstable. 
 Questions about how to navigate a noisy vehicle on an unstable 

orbit. 
 CU and JPL are studying the benefits of adding satellite-to-satellite 

tracking (SST) to the navigation system. 

Motivation 

GEO 

Moon 

L2 Orbit 
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 Proposals to send humans to an orbit about the Earth-
Moon L2 point. 
 Such orbits are unstable. 
 Questions about how to navigate a noisy vehicle on an unstable 

orbit. 
 CU and JPL are studying the benefits of adding satellite-to-satellite 

tracking (SST) to the navigation system. 

 
 Need to formulate a baseline. 

 Study the navigation of a noisy, crewed vehicle in a low lunar orbit 
 direct comparison with Apollo data. 

 Study the costs and benefits of SST in that environment. 
 Apply lessons to L2 mission. 

Motivation 
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 Crewed missions, including Apollo and the proposed Orion, 
typically experience significant unmodeled disturbances: 
 Wastewater dumps 
 Momentum desaturation maneuvers 
 Attitude control burns 
 Venting of gasses, such as CO2 
 Thermal venting 
 Water sublimation 

 
 These disturbances have become known as FLAK  

(unfortunate Lack of Acceleration Knowledge) 
 

 The Apollo lunar spacecraft experienced position uncertainty 
growth of about 500 meters in an hour while in low lunar orbit. 

Apollo Flight Experience 
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 FLAK is not well understood yet for proposed crewed vehicles, 
such as Orion. 
 

 It is reasonable to expect that FLAK will be the same order of 
magnitude for future missions as for Apollo. 
 

 FLAK model in current study: 
 Accelerations that accumulate in a 500 meter growth in position 

uncertainty when the vehicle is not being tracked. 
 Applied in a spherically-symmetric fashion. 
 Day/Night dependency: 

Day cycle: full FLAK 
Night cycle (8 hours/day):  10% FLAK 

 
 This all requires significant tracking efforts for precision 

navigation. 

Modeling FLAK 
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Ground Networks 

IDAC4B = Integrated Design and Analysis Cycle 4B 
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 Linked, Autonomous, Interplanetary Satellite Orbit Navigation (LiAISON) 
 
 
 
 
 
 
 

 Uses scalar satellite-to-satellite tracking (SST) 
 Range,  Doppler 

 
 Navigation satellite placed in orbit about L1 or L2. 

 Fixed to both the Earth and the Moon 
 

 Achieves absolute navigation of both vehicles even without any ground 
observations. 
 

 Huge geometrical benefit when supplementing ground tracking. 

Satellite-to-Satellite Tracking 
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 Crewed vehicle placed in a low lunar orbit: 
 

 
 
 
 
 Navigation satellite placed in either an L1 or L2 halo orbit: 

Mission Design 
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 Gravity 
 Point-mass Earth, Sun, Moon, and all planets 
 Moon: LP150q gravity field truncated to 20x20 
 DE405 ephemerides 

 
 Solar Radiation Pressure 

 Area-to-Mass ratio:  0.01 for both vehicles 
 Flat plate model with CR = 1 
 Conical shadow model for Moon; neither vehicle ever enters the 

Earth’s shadow 

Dynamical Model 
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Tracking Architectures 

 Lunar navigation satellite 
tracked by either of 2 
options: 
 LiAISON 
 DSN + LiAISON 

 
 
 Tracking data types: 3 

options: 
 Range 
 Doppler 
 Range + Doppler 

 Crewed lunar orbiter tracked 
by any of 5 options: 
 DSN 
 IDAC4B 
 LiAISON 
 DSN + LiAISON 
 IDAC4B + LiAISON 

 
 Lunar navigation satellite 

placed in either: 
 L1 orbit 
 L2 orbit 

 
 

The following architectures have been considered: 
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 Tracking schedule: 

Tracking Schedules 
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 FLAK: 
 Day cycle:    16 hours / day:   full FLAK 
 Night cycle:    8 hours / day:   10% FLAK 

Tracking Schedules 
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 LiAISON 
 24/7 tracking 
 Occultations 

 
 Note: from L1, LiAISON occurs on the near side of the Moon; 

from L2, LiAISON occurs on the far side. 

 

Tracking Schedules 
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 Three DSN stations track the crewed lunar orbiter 24/7 
 One at a time 
 Priority: Goldstone, Madrid, Canberra 
 10 deg elevation mask 
 Future study: add Delta-DOR, though that is only intermittently 

available 

 

Tracking Schedules 
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 Three IDAC4B stations are receive-only, optionally 
providing 3-way tracking of crewed lunar vehicle 
 Tied to one partner DSN station 
 10 deg elevation mask 
 Santiago, Chile tied to Goldstone, California 
 Hartebeesthoek, S. Africa tied to Madrid, Spain 
 Usuda, Japan tied to Canberra, Australia 
 Delta-DOR may be possible in 3-way configuration 

Tracking Schedules 
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 Three DSN stations optionally track the lunar navigation 
satellite 
 No occultations 
 24/7, one at a time 
 Priority: Goldstone, Madrid, Canberra 

Tracking Schedules 
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 Scalar, instantaneous range and range-rate measurements 
 
 
 
 
 
 
 
 

 Biases are drawn from a Normal distribution and applied to all 
observations between two antennae. 

 White noise is also drawn from a Normal distribution, but 
sampled once for each observation. 

 Observations every 60 seconds 

Measurement Model 
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 Bias and white noise statistics 

Measurement Model 

LPO = Libration Point Orbit 
 

LLO = Low Lunar Orbit 
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 Covariance study 
 Since FLAK is poorly understood, it is unrealistic to perform a full 

navigation simulation. 

 
 Kalman Filter linearized about the truth trajectories 

 Cramér-Rao Lower Bound (CRLB) 
 Estimates the best a filter can do, i.e., the lower bound of the state 

uncertainty. 

Simulation 
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State Parameter a priori uncertainty 1-σ 
Position of LPO Rx

LPO 100 meters 

Ry
LPO 100 meters 

Rz
LPO 100 meters 

Velocity of LPO Vx
LPO 1 m/s 

Vy
LPO 1 m/s 

Vz
LPO 1 m/s 

Position of Crewed LLO Rx
LLO 10,000 meters 

Ry
LLO 10,000 meters 

Rz
LLO 10,000 meters 

Velocity of Crewed LLO Vx
LLO 10 m/s 

Vy
LLO 10 m/s 

Vz
LLO 10 m/s 

Simulation Details 
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 LiAISON-only with large a priori 

Simulation Results 

L1 Sat: 
10 meters 

LLO Crewed Sat: 
300-800 meters 
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 DSN-only for both vehicles 

Simulation Results 

L1 Sat: 
<10 meters 

LLO Crewed Sat: 
100-2000 meters 
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 L1 vs. L2 orbits 

Simulation Results 

L1 orbiter tracks simultaneously with ground. 
Long gaps per orbit. 

L2 orbiter alternates tracks with ground. 
Smoother performance. 
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Simulation Results 

a = Range + Range-rate 
b = Range only 
c = Range-rate only 

Bars = mean RSS 3σ position uncertainty from 3+ days 
 

Extensions = 99 percentile RSS 3σ position uncertainty 
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Summary 

 Satellite-to-satellite tracking (LiAISON) may be used without ground tracking 
and obtain a good estimate of the state of both satellites. 
 

 LiAISON supplements the ground tracking very well.  
 IDAC4B is only moderately better than DSN 

 DSN+LiAISON is significantly better than DSN only 

 
 LiAISON is a better substitute than 3 IDAC4B receiving stations. 
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Thank You 
 

Questions? 
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