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Data Source: GOSAT



Global Greenhouse Gas Observation by Satellite

Looming...
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“IBUKI™ Cloud and Aerosol Imager (TANSO-CAl) “FIRST LIGHT” False Color—composite Image
on February 7, 2009, around 1 p.m. (JST)
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Latitude (deg.)

GOSAT Measurements = Sound

Up to every ~4 seconds
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ces where you have “truth”

Around 62k observations over 2 years
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What is a raw “sounding’
An infrared spectrum
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A single CO, value

—> 381.5 ppm

Models and BayeS|an optimization

Spectrum

J
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We’re just practicing on GOSAT... for the new OCO-2 mission, we have data every
0.05 seconds or so. That's a lot of computation. Processing is expensive.



Problem: Disagreement

1C



1.4

11.2

=2
—
|

(syuno2)boj

40U

375290385 390 395 400
“TRUTH”

370

11



GOSAT CO2

Plotting IMAPDOASPreprocessing/co2_ratio_idp
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GOSAT - TRUTH

Predictive Features(s)

Then say: “l hope that got rid of all the bad data and biases...”
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Y intercept -

Predictable Physics &
Retrieval Biases

MY +
Slope=AYIAX
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Noise (aerosols,
unmodelled complexities,
measurement error)

(Noisy) Retrievals

Conclusion: Filter’s job is to remove random outliers, fit the remaining physics

Bias removal can “correct” lingering retrieval issues

Expectation: Filtering noise first will improve bias fit



Example Filter 1

Filter

Filter criterion

Retain data with good spectral *is

Retain data with well-retrieved
surface elevation

Retain scenes without extreme aerosol
optical depth values

Retain data with no diverging steps

Retain scenes with no cloud

Retain data that converge

reducedchisquared_o2_fph < 1.2+ 0.083 = { fyear — 2009.26)
reduced.chisguared-strongco2 dph <= 1.2 4 00040 = ( fyear — 2009.26)
reduced chisquared_weak col_(ph = L2+ 0.064 w2 { fypar — 2000.26)

[{AP)—AP| =35 hPa
(AP =surface pressurefph — surface pressure apriori Aph)
005 = retrieved-aerosol -aod-by-type = 0,15

(use the [ rst of the 5 rows of the matrix)
diverging.steps = 0

cloud_lag = 0

outcome. lag = Lor2

Retain data with “H" gain only

Retain no glint data

Retain scenes without cloud over ice

Retain scenes unless with nonzero
Xep, uncertainties

gain.lag = *H
glini_ag =0

2 4xalbedoo2.fph
xcol_uncert #= 0

1.13 xalbedostrong.cofph = 1

Parameter Mean value

Coefl cients

Assumption 1 Assumption 2 Assumption 3

blended albeda (0.3
AP .59 hPa
alrmass 2.6

signal-o2 37= 107" Wem

65504 6304 62404
—0154001  —014£000 —016+0.01

—1.3+04 — 13404 —1.5+0.4

o Nem™ Tl —047TH008 0452008 —047 008

Fit Params: dP

surf»

Lots of filter inputs, only segregates
data into good/bad

airmass, signal O,, albedo

st Work

Example Filter 2

Table 3. Advanced screening criteria for the L2 in the v2.10 data.

Variable

RetrievalResults/outcome_flag
RetrievalResults/aerosol_total_aod
RetrievalResults/aerosol_water_aod
RetrievalResults/diverging_steps

SoundingGeometry/sounding_altitude_stddev

IMAPDOASPreprocessing/co2_ratio_idp

IMAPDOASPreprocessing/hZo_ratio_idp

ABandCloudScreen/dp_cld » 102 [hPa]
RetrievalResults/aerosol_ice_aod
SpectralParameters/reduced_chi_squared_o2_fph
SpectralParameters/reduced_chi_squared_weak_co2_fph
SpectralParameters/reduced_chi_squared_strong_co2_fph
RetrievalResults/xco2_uncert = 105 [ppm]
RetrievalResults/albedo_slope_strong_co2

APs [hPa]

RetrievalResulis/albedo_slope_o2
RetrievalResults/albedo_slope weak_co2
RetrievalResultsitemperature_offset_fph
RetrievalResults/zero_level_offset_o2

RetrievalResults/albedo_strong_co2_fph

Blended Albedo

SpectralParameters/signal o2 fph = 107

Allowed Range

Ocean Glint Land H Land M
lor2 Tor2 1or2
<03 <05 <03
<015 <0.15 <015
<=2 <=2 <=2
<200 <200 <200
0.985 to 0.985to 0.985 to
1.005 1.005 1.005
0.96 to 1.10 ??g to 0.96 to 1.08
-8to 8 —8to8 —10to 10
<0.02 <0.02 0.004 to 0.04
<15 <125 <15
<18 <186 <16
<20 <20 <20
<15 <20 <20
>1.2e-5 >-1e-4 >-le-4
-10to 10 -10to 7 12102
< 4e-6 <0
-Te-6 to -5e-7
>
<5.0
> 0.01

<08 <0.8

151065

X! =Xy +0.19(AP; + 1.0 hPa) + 7.0 (A - 0.20) + 1.2

Fit Params: XCO,, dP, Albedo SCO,

15



— 17z e == S [ M= & ‘/;‘»
Original Task

1) Can we make a data-driven filter to guide users
to avoid “bad” GOSAT retrievals?

2) Can we “fit out” disagreement? If so, what are
the features and coefficients?

3) Can we figure out when/why coZ2 differs so
strongly?

4) Oh, and don’t alienate the climate scientists...

Hope: A more principled, automated way to create these filters and fits

1€



240 potentially predictive features including:

*observation geometry

*solar geometry

spreprocessor outputs

ephysical environment like humidity, temperature, pressure
retrievals of peripheral gasses like methane

signal quality and strength

efc...
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Filter Fit

How do filtration and bias
correction relate?
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Tried LDA (Fischer), SVM'’s, Decision Trees...
Got some results, some features of interest

Each time when reporting in the larger mission sphere,
you get the same response.:

Nodding heads
“Very interesting”
Nothing changes...

It's quite hard to fight complex results against decades

of training.
i



* Genetic algorithm for threshold filters
* Minimize CQO2 error vs. data accepted
« Examine features that dominate

REJECT

KEEP

REJECT

+ = u o

M(240) features

Metadata 1 (airmass)

2(



Once we have our filters, judge them
based on how well we “fit out”
remaining discrepancy. Metric: R?

CO, difference

Predictive Features

Works! Gets you beautiful, compact graphs that make intuitive sense...
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R2 linear fit
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Only one problem:

Filters are throwing out known good regions first
| made a contaminated sounding selector!

Now why would my code find that solution?

All | told it to do was improve the fit...
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Actual

sounding Systematic Contamination
Predictable variability (aerosols, clouds)
Physics & e
Retrieval Biases
— ' SlopesAYiAX ﬁ\.{f
. | B eloneskTilF
(airmass, etc.) b Y intercept T
(unmodel.et-j pHys}cs,. SLirfMace topology, etc.)

X (clouds)
(Noisy) Retrievals

L 4

Conclusion: We have a much more difficult task to discover any underlying XCO2
bias beneath a much larger systematic bias due to aerosol/cloud contamination

24



_. —> Imaginary filter
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385

Imperfectly separated populations
Red (cloud) has strong bias f(aod)
Green (clear) has no bias f(aod)
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In this case, because two populations have different systematic bias, and are not fully
separated, any bias correction does not improve the green distribution. 25



Clouds, our major contamination source,
are HIGHLY fittable (high R?)

Filter + fit solution graded on the quality of fit makes a
CLOUD SELECTOR

FILTER SOLUTION: Two Pass
1) Create filters based on reducing the RMS truth difference alone

2) Select the best fit for each filter solution afterwards

26



Two Pass Filter Fit

27
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Require 2 to 3 features to get the manual filter capability
(only around 4 features worth present)

RMS(truth difference) is nicely decreased with additional filtration.

Notice: No “knee.” No clear break between good and bad.

B~
T

1 feature

OManu_a

D filter features

= |deal
+  Apprx. Noise Floor|
num features 1
num features 2
/ num features 3
"""""""""""""""""""""""""""""""""""""""""""" num features 4
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num features 10
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Fit Improvement over Filtration Alone (ppm)
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Transparency (%)

‘ ] | j . T 00T, 001
For 1 feature filter, there is still stuff to fit it
out 003,001
- For 2 or 3 feature filter, the more you filter, .
the LESS there is to fit away
They are competing for the same resource
OManuaI filter & fit
| 12 filter, 5 fit features 1
0 20 20 60 80 100

3C



We have complex data with multiple overlapping populations
Our features are (not yet) able to separate them fully
Some have high bias and some do not

A single overall bias correction is not correct for any one population

Plotting IMAPDOASPreprocessing/co2_ratio_idp
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Filtration is powerful BUT:
Binary good/bad makes little sense

Bias correction (fitting) is ill-advised and strongly filter-
dependent

You have around 12 predictive features, but only ~3
are needed for over 90% of the prediction

So... can you help us make a filter or not?

32



Someth 1§} {' rer
Just order the data instead
No good / bad assignment

List of most to least fit data according to metric

User decides how far into the ordering to use




RetrievalResults/xco2
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Plotting IMAPDOASPreprocessing/co2_ratio_idp

Some low sensitivity

Most sensitivity is for high
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~ Transparency Warn Level

93%
88%
83%
78%
73%
68%
63%
58%
53%
48%
43%
38%
33%
28%
23%
18%
13%
8%
3%

“If sounding passes this filter but none below, it's this warn level”
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17
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15
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12
11
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co2_ratioL co2_ratioU ice_aodL ice_aod U

0.9750
0.9798
0.9804
0.9810
0.9816
0.9823
0.9829
0.9835
0.9841
0.9848
0.9854
0.9860
0.9866
0.9873
0.9879
0.9885
0.9891
0.9898
0.9904

1.0411
1.0331
1.0261
1.0200
1.0148
1.0106
1.0073
1.0050
1.0040
1.0030
1.0020
1.0010
1.0000
0.9990
0.9980
0.9970
0.9960
0.9950
0.9940

0.0003
0.0005
0.0008
0.0010
0.0013
0.0015
0.0018
0.0020
0.0023
0.0025
0.0028
0.0030
0.0033
0.0035
0.0038
0.0040
0.0043
0.0045
0.0048

0.0729
0.0358
0.0333
0.0309
0.0284
0.0259
0.0234
0.0209
0.0184
0.0160
0.0158
0.0155
0.0153
0.0150
0.0148
0.0145
0.0143
0.0140
0.0138

albedo L
-0.000097
-0.000094
-0.000091
-0.000088
-0.000085
-0.000082
-0.000079
-0.000076
-0.000073

-0.00007
-0.000067
-0.000064
-0.000061
-0.000058
-0.000055
-0.000052
-0.000049
-0.000046
-0.000043

IMAPDOASPreprocessing CO2_ratio_idp

RetrievalResults

RetrievalResults

aerosol_ice_aod

albedo_slope_o02

albedo U

0.000105476
5.37342E-05
2.63391E-05
1.23644E-05

5.5277E-06
0.000003
0.000001
-0.000001
-0.000003
-0.000005
-0.000007
-0.000009
-0.000011
-0.000013
-0.000015
-0.000017
-0.000019
-0.000021
-0.000023

Least Conservative

Most Conservative



The Warn Levels / Quality Estimation System are
now defined.

Evaluate resulting system for:

1) Metric Reduction (RMS and MMS)
2) Global/regional WL dependence
3) Temporal dependence

4) Strange behavior



RMS(ACOS-TCCON) (ppm)
o [ N w B
U = u N w w U S U

o

N =
]

Wy
\ —

Performs at 2-3 feature level even after:

’
-

-Exactly 3 features for entire span

-Subsampling
-Monotonicity

-Averaging with second Metric

-Equivalent to manual suggestions
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Warn Level 0/19
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Icy regions

Lan
H
.
H
H
H
-
.
H
H
e
-
H . .
H :
H . .
. H . :
LR l-lllI!lllll!‘lllll'ﬁlilll!ll
. H H H
1 . :
H . H
ELEL] e '--- -{------}-----’--
- H - H
H . H
H . .
H : :
sassalasssafssnsadensnadhannacyen
. H ' .
- H - H
. H . H
. H . H
PP TR S RPN, A e
. H .
. H .
H H
b
o H aaies. - P
Hi il . .
H H : .

.
"

NN NI NN SRR N RN R R
N . .

CCLET

3
iad ¥
N
H

-

.
-
-

aue




XCO2 diff statistics (ppm)
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Have “Warn Levels” that:

-Perform similarly to a manually crafted expert system

-Permit dialable transparency for less/more data than above
-ldentify several key features that correlate to quality of retrieval
-Create a new product that sorts soundings by likely utility

-Do not favor particular geographic regions or timespans
-Incorporate two truth metrics

-Can be used for Sounding Selection (pre-algorithm) or Quality
Estimation (post-algorithm)
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What if we could
classify those sub-
populations and fit
each of them
individually?

Might resurrect
bias correction

“Retrieval
|dentifier” to let
you know what
went wrong and
attempt to
correct...

RetrievalResults/xco?2
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Plotting IMAPDOASPreprocessing/co2_ratio_idp
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