
Functional Programming Language
Constructs for Multicore

Kim P. Gostelow
Jet Propulsion Laboratory, California Institute of Technology

May 22, 2011

The Vision

• Look to when there are thousands of cores on a
spacecraft
– Expectation

• Faulty core=> computations move to another core
• Reduce power => performance slows, but does not quit

– Policy-driven computation
• Computations reorganize in real-time
• Introspective

– Little or no consideration needed by the programmer
• Programmers should not spend their time

orchestrating intricate (and brittle) data arrangements
and code
– It breaks when processors fail
– It should not be part of the job

2

Machine Architecture

• Large number of cores per chip
– No shared memory visible to the programmer

• Any shared memory is for internal purposes (e.g., message passing)

• Cores communicate with neighbors via high-speed,
message-passing links

• Cores and links
– May fail
– May be powered on and off

M

M D

D

. . .

. . .

3

What is a Functional Language?

• Can define a value only once
– Single-assignment

• Not memory cells that can be modified/replaced/updated/…
• Mathematical variables/values

• No side-effects

4

The relation f: A->B is a function if:
 For-all a in A there is a unique b in B such that f(a) = b

Functions (1)

5

extern int sum;

int A(int a) {
 sum = 0;
 for (int i=0; i<a; i++)
 sum += f(i);
 return sum;
}

Program A: Program B:

int B(int a) {
 int sum = 0;
 for (int i=0; i<a; i++)
 sum += f(i);
 return sum;
}

The relation f: A->B is a function if:
 For-all a in A there is a unique b in B such that f(a) = b

Functions (2)

6

int A(int a) {
 int sum = get_clock();
 for (int i=0; i<a; i++)
 sum += f(i);
 return sum;
}

int B(int a, int time) {
 int sum = time;
 for (int i=0; i<a; i++)
 sum += f(i);
 return sum;
}

Program C: Program D:

The relation f: A->B is a function if:
 For-all a in A there is a unique b in B such that f(a) = b

How Are Loops and I/O Functional?

• Loops
– A loop is a recurrence relation
– We make state explicit

• A functional view of I/O has been a long-standing
problem
– Monads in Haskel; “mutable”

in Fortress; Unique type in Clean
– Different proposal coming here

• Input: A file is an indexed array
– Read => get next byte and move pointer forward

• Output: A file is an indexed array
– Sometimes sequential dependencies, sometimes not

7

Not yet ready for
prime time

But I’d like to discuss my
approach with anyone
interested in the topic

Example: A Simple Loop

3/9/11 8

The factorial sequence (1 1 2 6 24 120 ...) is defined by
the recurrence relation

 si = i × si-1 where s0 = 1.

int factorial(int n) {
 int s= 1;

 for (i=1; i<n+1; i++) {
 s = i * s;
 }
 return s;
}

A typical C program to compute
the nth factorial for n = 0, 1, …

As a State-Aware Functional Program

9

int factorial(int n) {
 state int s;

 return
 initially
 s = 1;
 recur j = 1..n+1 {
 next s = j * s;
 }
 finally last s;
}

An implicit last step sets s[i+1] = next s

• Variable “s” represents a stream of state values s[0], s[1], …
• The computer need keep only the current and the next s[i] at

any one time.

Example: A Slightly Bigger Loop

The Fibonacci sequence (0 1 1 2 3 5 8 13 ...) is defined
by the recurrence relation

 si = si-2 + si-1 where s0 = 0 and s1 = 1.

10

A typical C program to
compute the nth Fibonacci

int fibonacci(int n) {
 int s0 = 0;
 int s1 = 1;
 int s2;

 if (n <= 0) return s0;
 if (n == 1) return s1;

 for (i=1; i<n; i++) {
 s2 = s0 + s1;
 s0 = s1;
 s1 = s2;
 }
 return s2;
}

 (0 1 1 2 3 5 8 13 ...)

si-2 si-1 si

Fibonacci in State-Aware Notation

11

int fibonacci(int n) {
 state int s;

 return
 initially s[0] = 0;
 s[1] = 1;
 recur (j = 2..n+1) {
 s[i] = s[i-1] + s[i-2];
 }
 finally last s;
}

• Variable “s” represents a stream of state values s[0], s[1], …
• The computer need keep only the most recent two (s[i] and s[i-1])

values and the next s[i] at any one time.

Functions and State

• State is treated differently (not theoretically, but as a
practical matter)

• State is explicit
– Recognize “state” with

a source language construct
– When the program moves, the

state moves with it
– The state is often surprisingly small

• A function applied to a state
value can be replicated, moved, restarted, …

12

stateful
box

current state

f

next state

current
input

current
output

Simple Rules Work

• To write programs as functions
– Often only small changes are needed

• Move state changes outside the large part of the computation
• Move calls to non-functions outside (Program C vs. D above)

– Use the recur loop
– Don’t create state where it isn’t necessary

• Don’t re-use variable names – each name has one meaning,
one value

• I/O is coming

13

Why Restrict to Functions?

• Any two functions whose arguments are available can
run concurrently

• Extra-functional properties guarantee certain behaviors
without further analysis
– Start/stop, re-execute, copy, … at any time

• Pure functions are easier to
– Test
– Use in other contexts without surprises

14

Rule #1

• You can’t change or re-assign a variable once its
value has been determined.

15

int fibonacci(int n) {
 stream state int s;

 return
 initially s[0] = 0;
 s[1] = 1;
 recur (i = 2..n) {
 s[i] = s[i-1] + s[i-2];
 s[i-1] = xxx;
 }
 finally s[n];
}

Illegal

Rule #2

• No shared variables.

16

extern int val;

int fibonacci(int n) {
 stream state int s;

 return
 initially s[0] = 0;
 s[1] = 1;
 recur (i = 2..n) {
 s[i] = s[i-1] + s[i-2] + val ;
 }
 finally s[n];
}

Illegal

A More Complicated Example (1)

17

• From the Mars Science Laboratory EDL (Entry, Descent, and Landing)
timeline code

– Tree of anchors
– Anchor’s time = parent anchor time + delta given by arc

• Unless anchor’s time is frozen, whereupon it can no longer change
• When clock time passes anchor’s time, the anchor freezes

– An arc’s delta can change at any time

• Time is seconds or undefined
– Undefined value propagates

Bool frozen
Time time

Anchor =
The time at which some
sequence of events is to begin.

0.01625 3.0

undef

The time separation between parent and
child anchors, unless overridden by an
entry in the parameter table

Arc =

Int arc Time dt
. . .

At 64 hz:
Propagate

and
compute a

new
anchor

tree

A More Complicated Example (2)

18

The state is an array of Anchor

Each iteration produces a new Anchor array

Anchor[] propagateAnchors(Anchor[] as, Arc[] arcs, ArcParm[] ps, Time now) {
 initially anchors = as
 for (arc, arcId) in enumerate(arcs) {
 parent = arc.parent_anchor
 child = arc.child_anchor
 next anchors[child] =
 if anchors[child].frozen then anchors[child]
 else {
 let Time t = add(anchors[parent].t ,
 if nonEmpty(parms = lookupArcParm(ps, arcId))
 then parms[0].dt else arc.deltat);
 in Anchor(now >= t, t) }
 }
 finally last anchors
}

This parses as (next anchors)[child]

Consequences

• Thesis
– No global state

• State is distributed across programs in (small) pieces
• Loops and other constructs state-explicit

– Mini-checkoints

• No large, mass checkpoints are needed

19

References

• Ashcroft and Wadge “Structured Lucid” Univ. of Warwick,
1980

• Arvind, Gostelow, and Plouffe “Indeterminacy, Monitors,
and Dataflow” Proc 6th ACM Symposium on Operating
Systems Principles

• Fortress Programming Language
http://projectfortress.java.net/

20

http://projectfortress.java.net/

	Functional Programming Language Constructs for Multicore
	The Vision
	Machine Architecture
	What is a Functional Language?
	Functions (1)
	Functions (2)
	How Are Loops and I/O Functional?
	Example: A Simple Loop
	As a State-Aware Functional Program
	Example: A Slightly Bigger Loop
	Fibonacci in State-Aware Notation
	Functions and State
	Simple Rules Work
	Why Restrict to Functions?
	Rule #1
	Rule #2
	A More Complicated Example (1)
	A More Complicated Example (2)
	Consequences
	References

