Functional Programming Language
Constructs for Multicore

Kim P. Gostelow
Jet Propulsion Laboratory, California Institute of Technology

May 22, 2011

The Vision

 Look to when there are thousands of cores on a
spacecraft

— Expectation
» Faulty core=> computations move to another core
» Reduce power => performance slows, but does not quit

— Policy-driven computation
« Computations reorganize in real-time
 Introspective

— Little or no consideration needed by the programmer

* Programmers should not spend their time
orchestrating intricate (and brittle) data arrangements
and code

— It breaks when processors fail
— It should not be part of the job

Machine Architecture

« Large number of cores per chip
— No shared memory visible to the programmer
* Any shared memory is for internal purposes (e.g., message passing)
« Cores communicate with neighbors via high-speed,
message-passing links

Processor = core + memory

Neighbor

e Cores and links interconnect
— May falil
— May be powered on and off

What is a Functional Language”?

The relation f: A->B is a function if:
For-all a in A there is a unique b in B such that f(a) = b

Can define a value only once

— Single-assignment
* Not memory cells that can be modified/replaced/updated/...
« Mathematical variables/values

No side-effects

Functions (1)

The relation f: A->B is a function if:

For-all a in A there is a unique b in B such that f(a) = b

Program A:

extern int sum;

int A(int a) {
sum = 0;
for (int 1=0; i<a; 1i++)
sum += f£(1);
return sum;

}

Program B:

int B(int a) {

}

int sum = 0;

for (int 1=0; i<a; 1i++)
sum += f£(1);

return sum;

Functions (2)

The relation f: A->B is a function if:
For-all a in A there is a unique b in B such that f(a) = b

Program C: Program D:
int A(int a) { int B(int a, int time) {
int sum = get clock(); int sum = time;
for (int i=0; i<a; i++) for (int i=0; i<a; i++)
sum += f£(1); sum += £ (1);

return sum; return sum;

} }

How Are Loops and I/O Functional?

 Loops
— Aloop is a recurrence relation

— We make state explicit / Not yet ready for
prime time

A functional view of I/O has been a long-standing

problem

— Monads in Haskel; “mutable” Butl'd '”:]e t_f:hdiSCUSS my
:) . . approacn with anyone
in Fortress; Unique type in Clea/ approach with anyone

— Different proposal coming here
 Input: Afile is an indexed array
— Read => get next byte and move pointer forward

« Qutput: A file is an indexed array
— Sometimes sequential dependencies, sometimes not

Example: A Simple Loop

The factorial sequence (1126 24 120 ...) is defined by
the recurrence relation

S; =1 X s; 4 Where sy =1.

int factorial (int n) { Atypical C program to compute
int s= 1; the nt" factorial forn =0, 1, ...

for (i=1; i<n+1l; i++) {
s =1 * s;
}

return s;

}

3/9/111 8

As a State-Aware Functional Program

Variable “s” represents a stream of state values s[0], s[1], ...
The computer need keep only the current and the next s[i] at

any one time.

Keyword state defines s as a state.
int factorial(%EE/B}/{
state int s;
The initially section defines s[0]
re?:u?::_ 11 = and the number of slots needed.
ilnitctila Y -
s = 1; '/
recur] = 1..n+1 {
next s =] * s;
} < An implicit last step sets s[i+1] = next s
finally last s;
\
} | | The finally section says what

to return at loop end — that is, s[n].

Example: A Slightly Bigger Loop

The Fibonacci sequence (011235813 ...) is defined
by the recurrence relation

S; = Sj.o0 +S;4 Wheresg=0ands;=1.

int fibonacci (int n) {

int s0 = 0; The state in the loop. |
' o
if (n <= 0) return s0O; (01 1 2 3 5 8 13)

if (n == 1) return sl; T

for (i=1; i<n; i++) {

s2 = s0 + s1;
sO0 = s1;
sl = s2;
J A typical C program to

return s2;

compute the nt" Fibonacci

10

Fibonacci in State-Aware Notation

» Variable “s” represents a stream of state values s[0], s[1], ...

« The computer need keep only the most recent two (s[i] and sJi-1])
values and the next s[i] at any one time.

int fibonacci(int n) {
state int s;

The initially section defines
the number of slots needed state.

return —
initially s[0] = 0; — |
s[1] = 1;
recur (j = 2..n+t1l) {
s[i] = s[i-1] + s[i-2];

}
finally last s;

11

Functions and State

« State is treated differently (not theoretically, but as a
practical matter)

current

. . . Standard input
« State is explicit replication and current state
: “ w oo moving f\
— Recognize “state” with f St?,f)e;u'
a source language construct /
— When the program moves, the L Uhextsite
state moves with it th

— The state is often surprisingly small

« A function applied to a state
value can be replicated, moved, restarted, ...

12

Simple Rules Work

« To write programs as functions

— Often only small changes are needed
« Move state changes outside the large part of the computation
* Move calls to non-functions outside (Program C vs. D above)

— Use the recur loop

— Don’t create state where it isn't necessary

« Don’t re-use variable names — each name has one meaning,
one value

* /O is coming

13

Why Restrict to Functions?

* Any two functions whose arguments are available can
run concurrently

« Extra-functional properties guarantee certain behaviors
without further analysis

— Start/stop, re-execute, copy, ... at any time

 Pure functions are easier to
— Test

— Use in other contexts without surprises

14

Rule #1

* You can’t change or re-assign a variable once its
value has been determined.

int fibonacci(int n) {
stream state int s;

return

initially s[0] = 0O;
s[1l] = 1;
recur (i = 2..n) {
s[i] = s[i-1] + s[i-2];
s[i-1] = xxx; < IHegaI

}
finally s[n];

15

Rule #2

No shared variables.

extern int val;

int fibonacci (int n)
stream state int s;

return
initially s[0] = 0O;
s[1l] = 1;
recur (i = 2..n) {
s[i] = s[i-1] + s[i-2]

}
finally s[n];

+ val

N

lllegal

16

A More Complicated Example (1)

* From the Mars Science Laboratory EDL (Entry, Descent, and Landing)
timeline code

— Tree of anchors

— Anchor’s time = parent anchor time + delta given by arc
Unless anchor’s time is frozen, whereupon it can no longer change
When clock time passes anchor’s time, the anchor freezes

— An arc’s delta can change at any time

 Time is seconds or undefined
— Undefined value propagates

The time separation between parent and
Arc = child anchors, unless overridden by an
At 64 hz: entry in the parameter table
Propagate 3.0 0.01625 —\

and Intarc | Time dt
compute a

new
anchor

tree V ('\

Anchor = | Bool frozen

Time time €4—— The time at which some
sequence of events is to begin.

undef

17

A More Complicated Example (2)

Anchor[] propagateAnchors(Anchor][] as, Arc[] arcs, ArcParm|[] ps, Time now) {
initially anchors = as < The state is an array of Anchor
for (arc, arcld) in enumerate(arcs) { <«———— Eachiteration produces a new Anchor array
parent = arc.parent_anchor
child = arc.child_anchor

next anchors[child] = < This parses as (next anchors)[child]
if anchors[child].frozen then anchors|child]
else {

let Time t = add(anchors[parent].t ,
if nonEmpty(parms = lookupArcParm(ps, arcld))
then parms[0].dt else arc.deltat);

in Anchor(now >={, t) }

}

finally last anchors

18

Consequences

e Thesis

— No global state
« State is distributed across programs in (small) pieces
« Loops and other constructs state-explicit

— Mini-checkoints
* No large, mass checkpoints are needed

19

References

» Ashcroft and Wadge “Structured Lucid” Univ. of Warwick,
1980

* Arvind, Gostelow, and Plouffe “Indeterminacy, Monitors,
and Dataflow” Proc 6" ACM Symposium on Operating
Systems Principles

* Fortress Programming Language
http://projectfortress.java.net/

20

http://projectfortress.java.net/

	Functional Programming Language Constructs for Multicore
	The Vision
	Machine Architecture
	What is a Functional Language?
	Functions (1)
	Functions (2)
	How Are Loops and I/O Functional?
	Example: A Simple Loop
	As a State-Aware Functional Program
	Example: A Slightly Bigger Loop
	Fibonacci in State-Aware Notation
	Functions and State
	Simple Rules Work
	Why Restrict to Functions?
	Rule #1
	Rule #2
	A More Complicated Example (1)
	A More Complicated Example (2)
	Consequences
	References

