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Abstract—Space-time Data Fusion (STDF) is a methodology for
combing heterogeneous remote sensing data to optimally estimate
the true values of a geophysical field of interest, and obtain
uncertainties for those estimates. The input data sets may have
different observing characteristics including different footprints,
spatial resolutions and fields of view, orbit cycles, biases, and
noise characteristics. Despite these differences all observed data
can be linked to the underlying field, and therefore the each
other, by a statistical model. Differences in footprints and other
geometric characteristics are accounted for by parameterizing
pixel-level remote sensing observations as spatial integrals of
true field values lying within pixel boundaries, plus measurement
error. Both spatial and temporal correlations in the true field
and in the observations are estimated and incorporated through
the use of a space-time random effects (STRE) model. Once
the models parameters are estimated, we use it to derive
expressions for optimal (minimum mean squared error and
unbiased) estimates of the true field at any arbitrary location
of interest, computed from the observations. Standard errors of
these estimates are also produced, allowing confidence intervals
to be constructed. The procedure is carried out on a fine spatial
grid to approximate a continuous field. We demonstrate STDF
by applying it to the problem of estimating CO2 concentration in
the lower-atmosphere using data from the Atmospheric Infrared
Sounder (AIRS) and the Japanese Greenhouse Gasses Observing
Satellite (GOSAT) over one year for the continental US.

I. INTRODUCTION

The motivation for this work is the need to combine data

from multiple remote sensing instruments to paint a com-

plete and quantitative picture of the distribution of important

geophysical quantities over the Earth and in its atmosphere.

We focus on carbon dioxide (CO2) in the lower part of

Earths atmosphere because this may be a proxy for CO2

flux, and that flux is an extremely important quantity for

understanding the carbon cycle. Moreover, no remote sensing

instrument observes flux directly, but NASA’s Atmospheric

Infrared Sounder (AIRS) and the Japanese Greenhouse Gases

Observing Satellite (GOSAT) observe different parts of the

atmospheric column which, taken together, can be used to

calculate an estimate of lower atmosphere CO2. In order to

produce these estimates and quantify their uncertainties we

must account for differences in the input data sets: their reso-

lutions and other spatial and temporal sampling characteristics.

We also need to exploit spatial and temporal correlations in

both the observations and in the underlying true field and

correct for instrument biases.

The fundamental construct that allows us to do these things
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Fig. 1. Problems in remote sensing data analysis. The text boxes describe
six related problems. The left column articulates three of these. The top-
left box relates to making inferences about a single field of interest (e.g.,
carbon dioxide) from one remote sensing data set at a single time point. The
middle-left box relates to making inferences about a single geophysical field
from two data sets, also at a single time. The bottom-left box corresponds to
making inferences about two different geophysical fields when each is seen
by a different instrument. The right panel shows the same set of scenarios, but
for cases where multiple snapshots of the scene are available at a succession
of times.

is a statistical model that relates the observed data to the

underlying true field of interest at a specified set of locations

and times. To introduce the model and how it will be used, we

first discuss a basic statistical framework for modeling spatio-

temporal data and show how this framework addresses the

problem of spatial interpolation using a single data set. Then

we show that data fusion is just an extension of the same idea

to multiple data sets simultaneously. Finally, we extend the

framework to include time so that we take full advantage of

both spatial and temporal relationships in the data.

Figure 1 shows the relationships among six different flavors

of the space-time interpolation problem, including data fusion.

Each box in the Figure states the the problem it represents

(e.g., infer the true values of two fields from two different

remote sensing images at multiple time points), and gives a

specific name (e.g., multiple process, multiple source, space-

time data fusion) to that particular version. In this article, we
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Fig. 2. Remote sensing data and their relationship to the true quantity of
interest. The left panel shows the true geophysical field (A). (B) shows the
field as it is viewed by a remote sensing instrument. The image is pixelated
because each pixel is the average of the true values in (A) belonging to it. The
instrument has measurement error, so (C) shows the image corrupted by noise.
Noise is assumed to be independent from pixel to pixel. Finally, some pixels
may not be observed at all due to instrument observing characteristics (e.g.,
some instruments cannot see through clouds). (D) shows the image under
these conditions.

will build up the story starting with the box in the upper-left

and ending with the box in the lower-right: multiple process,

multiple source, space-time data fusion, which we generically

refer to as space-time data fusion (STDF) since the other five

boxes represent special cases of it.

In Section II, we present a basic model for remote sensing

data that articulates quantitatively the relationships between

the data we observe and the unobserved true quantity of

interest. In Section III we use that model to address the

problem of spatial interpolation using a single data set, then

extend that to data fusion beginning with one quantity of

interest and two data sources but ignoring time. Next, we

expand the paradigm to cover the case where there are two

quantities of interest, each viewed by one instrument, and

finally we incorporate time into our model yielding the STDF

methodology. In Section We apply STDF to one year of data

from AIRS and GOSAT to estimate lower atmosphere CO2

on a one-degree spatial grid and two-week time steps for one

year, over the continental US. We close with a short discussion

of these results.

II. THE STATISTICAL NATURE OF REMOTE SENSING DATA

Remote sensing data are, by their very nature, statistical.

Satellite instruments do not directly observe geophysical vari-

ables, they observe radiances from which geophysical informa-

tion is inferred. Observations from space are typically made on

spatial units coincident with instruments’ pixels, while the true

physical process is continuous in space. This discretization of

the scene is one source of uncertainty. Another source is that

the instrument itself adds measurement error at the pixel level.

This error includes both bias (“systematic” error) and variance

(“random” error). Finally, there may be additional bias and

variability due to the inability of the instrument to observe

under certain conditions (e.g. clouds). These relationships are

illustrated in Figure 2.

The problem is that we only have access to information like

that in panel (D) in Figure 2, and we want to infer the true

continuous field in panel (A). We can do this using a spatial

statistical model that relates the observations in panel D to the

true field in panel (A).

The relationships necessary to make an inference about (A)

based on information from (D) can be quantified precisely.

Let s be a point location (e.g, latitude and longitude) in the

domain shown in panel (A) of Figure 2. Denote the domain

by D, and let Y (s) be a random variable capturing the value

of the geophysical variable (equivalently, geophysical “field”)

of interest at location s in D. The remote sensing instrument

discretizes the scene into pixels (as shown in panel (B)), so

we define

Y (B) =
1

|B|
∫
u∈D

Y (u) du, (1)

as the noiseless value of Y at the resolution of the pixel,

denoted by B. Y (B) is simply the average of Y (s) for all

s in the pixel B. The instrument adds random measurement

noise to what it sees:

Z(B) = Y (B) + ε(B),

where ε(B) is an independent Gaussian measurement error

term with variance V ar(ε(B)) = σ2
ε , and possibly some bias,

E(ε(B)) = με. This is shown graphically in panel (C) as

a noisy version of panel (B). Finally, some pixels may have

missing data as shown in panel (D). We concatenate all the

observed values for non-missing pixels in panel (D) to form

a column vector

Z = (Z(B1), . . . , Z(BN ))
′
,

which captures the data in the N non-missing pixels.

III. INFERENCE FROM REMOTE SENSING DATA

In this section we use the model presented in Section II to

develop the models we will use for data fusion.

A. Single Process Spatial Interpolation and Data Fusion

The simplest inference problem related to remote sensing

data is to infer the geophysical field, sometimes called the

geophysical “process”, at a specified location (or on a grid of

locations) from aggregated, noisy, incomplete data like those

shown in panel (D) of Figure 2. A simple linear estimate of

Y (s) is

Ŷ (s) = a′sZ,

where as is chosen to minimize the mean squared error,

MSE(Y (s), Ŷ (s)) = E||Ŷ (s)− Y (s)||2, (2)

subject to the condition that the estimate be unbiased:

E(Ŷ (s)) = E(Y (s)). (3)

The problem can be solved using the method of Lagrange

multipliers to minimize (2) subject to (3).

Now suppose a second remote sensing data set, possi-

bly with different resolution and statistical characteristics, is

available (see Figure 3). As before, denote the geophysical

variable’s value at location s by Y (s) but now we have two

data vectors,

Z1 = Z(B11), . . . , Z(B1N1
)
′
, Z2 = Z(B21), . . . , Z(B2N2

)
′
,
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Fig. 3. A true geophysical field (left), and two remote sensing instruments’
views of it (center and right).

where Bkm denotes the mth footprint in the data set for

instrument k. For technical reasons it is necessary to make

a slight modification to the definition of Y (B) in (1). Instead

of defining Y (B) as an integral over an infinite number of

locations s in the domain, we partition the domain into a set of

very fine, non-overlapping quantum spatial units called basic

areal units (BAU’s). Each location s is associated with one of

these BAU’s so s is not continuously varying, but in practice

it is nearly so. The domain D is defined to be the union of

all the identifying points for the BAU’s. The reason for this

modification is so that in practice there are a countable number

of locations to be considered in any calculation. The modified

definitions of Y (Bkm) and Zk(Bkm) are

Y (Bkm) =
1

|D ∩Bkm|
∑

u∈D∩Bkm

Y (u), and

Zk(Bkm) = Y (Bkm) + εk(Bkm).

Note that Y (B1m1) and Y (B2m2) are different from each

other because they are averages over different spatial foot-

prints, and that we never actually observe them.

As was the case earlier, the optimal (minimum mean

squared error, unbiased) estimate of Y (s) is of the form

Ŷ (s) = a′1sZ1 + a′2sZ2, (4)

where a1s and a2s are the solutions to the constrained mini-

mization of (2) subject to the unbiasedness condition, (3). We

call a1s and a2s the data fusion coefficients and (4) the data

fusion estimator of Y (s). While it is intuitively clear that the

data fusion problem can be solved this way, there is a more

general formulation that will be required in order to introduce

time into the framework.

The formulation in (4) focuses on solving for the data

fusion coefficients, (a1s, a2s), at every location s for which

an inference will be made. However, our interest is not so

much in the coefficients themselves as it is in the estimates of

Y (s). An alternative model for Y (s) is

Y (s) = μ(s) + ν(s) + ξ(s), (5)

μ(s) = t(s)
′
α, ν(s) = S(s)

′
η.

The model in Equation (5) is called the Spatial Random

Effects model (SRE), and it expresses Y (s) as a sum of three

components. The first component, μ(s), is called the trend, and

reflects the large scale behavior of Y . The trend is the behavior

of Y (s) that is easily explained by a simple statistical model

such as the regression, μ(s) = t(s)
′
α. t(s) is (say) a vector

of the latitude and longitude of location s, and α is the least

squares regression coefficient.
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Fig. 4. Multiresolution basis for encoding location u.

The component ν(s) is called the spatial covariance term,

and it captures the spatial covariance structure of Y (s);
we assume it that it is Gaussian with mean zero and

Cov(ν(u), ν(v)) (the covariance between two locations) that

can be modeled as a linear combination of the elements of a

hidden state vector, η. S(s) is the weight vector for location s
that tells us how to weight the elements of η in order to arrive

at an approximation for that portion of the structure of Y (s)
that is not captured by the trend. The elements of η correspond

to a set of locations defined at several specified levels of spatial

resolution. For example, in Figure 4 the domain is divided

into four subregions with centers m1,m2,m3, and m4 at the

coarsest level of spatial resolution, into 16 subregions at the

second level of resolution, and into 64 subregions at the third

level of resolution. The centers for the latter two levels are not

shown. A spatial location u is encoded by the local bisquare

function value of its distances from these 84 centers. The

local bisquare function decays as shown in the right panel

of Figure 4. These 84 distances are the components of the

weight vector S(u), and η is also of dimension r = 84 in the

example provided by the figure. The encoded values of the

locations of interest are said to form a multiresolution basis

set, and, since the encoding scheme is chosen by us, they are

known and fixed. η, on the other hand, is not known and must

be estimated from the data. It turns out that η can be estimated

from footprint level data as we shall see below.

The final component of the model (5) is the fine-scale

variation term, ξ(s). This accounts for variability not captured

by the trend or spatial covariance terms. One can also think

of it as sub-BAU variation. It is assumed to be Gaussian with

mean zero and variance σ2
ξ for all locations.

The estimate of Y (s) implied by the model (5) is

Ŷ (s) = μ̂(s) + ν̂(s) + ξ̂(s),

= t(s)
′
α̂+ S(s)

′
η̂ + ξ̂(s). (6)

To proceed, we need to estimate α, η, and ξ(s). It will be

helpful to define the following quantities for the kth data set,



k = 1, 2:

Yk = (Y (Bk1), . . . , Y (BkNk
))

′
,

Y (Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

Y (u),

Tk = (t(Bk1), . . . , t(BkNk
))

′
,

t(Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

t(u),

μk = (μ(Bk1), . . . , μ(BkNk
))

′
,

μ(Bkm) =

⎡
⎣ 1

|D ∩Bkm|
∑

u∈(D∩Bkm)

t(u)
′
α

⎤
⎦

= t(Bkm)
′
α,

νk = (ν(Bk1), . . . , ν(BkNk
))

′
,

ν(Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

ν(u),

ξk = (ξ(Bk1), . . . , ξ(BkNk
))

′
,

ξ(Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

ξ(u),

Sk = (S(Bk1), . . . ,S(BkNk
))

′
,

S(Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

S(u),

εk = (εk(Bk1), . . . , εk(BkNk
))

′
.

These are vectors or matrices of footprint-level quantities

defined as the spatial averages of the BAU-level quantities

associated with locations within those footprints. Note in

particular that μ(Bkm) can be expressed as a linear com-

bination of t(Bkm) and α, which is independent of level.

The basis functions S(Bkm) also obey this linear aggregation

relationship, and this is crucial because it allows us to write,

ν(Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

ν(u),

=

⎡
⎣ 1

|D ∩Bkm|
∑

u∈(D∩Bkm)

S(u)
′
⎤
⎦η,

= S(Bkm)
′
η, (7)

and hence η is also independent of level of resolution. Both

α and η can therefore be estimated from footprint-level data.

The model relating all the data to the unknown quantities is(
Z1

Z2

)
=

(
Y1

Y2

)
+

(
ε1
ε2

)
,

=

(
T1

T2

)
α+

(
S1

S2

)
η +

(
ξ1
ξ2

)
+

(
ε1
ε2

)
,

or more compactly,

Z = Tα+ Sη + ξ + ε, (8)

where Z =
(
Z1

′,Z2
′)′, T =

(
T1

′,T2
′)′, S =

(
S1

′,S2
′)′,

ξ =
(
ξ1

′, ξ2
′)′, and ε = (ε1

′, ε2′)
′
.

To estimate α, we regress Z on T if there is no bias

in the instrument measurements. No bias means that the

expectations of ε1(B1m) and ε2(B2m) are both zero. It is,

of course, possible that the instruments do have biases which

we would then model as E(ε1(B1m)) = c1μ(B1m) and

E(ε2(B2m)) = c2μ(B2m) where ck are multiplicative bias

coefficients. The choice of a multiplicative bias model rather

than an additive one is somewhat a matter of convenience at

this point. If the bias coefficients are non-zero, then we define

C =

[
(1 + c1)IN1

0
0 (1 + c2)IN2

]
,

where INk
is the Nk ×Nk identity matrix, and regress Z on

CT to account for the biases. The solution is,

α̂ =
[
(CT)

′
(CT)

]−1
(CT)

′
Z.

While α̂ is an estimate and therefore has a variance, we treat

it as fixed from this point forward.

To estimate η, we use a Bayesian formalism, and assume

that a priori η is (r-dimensional) multivariate Gaussian with

mean zero and (r × r) covariance matrix K:

η ∼ Nr(0,K).

The optimal a posteriori estimate of η is

η̂ = E(η|Z) = G(Z− μ), G = KS′ΣZ
−1. (9)

The covariance matrix of Z is ΣZ and μ = (μ1
′,μ2

′)′. Using

an Empirical Bayes approach, we estimate K off-line and

consider it fixed for the remainder of this analysis. Currently

we use the method-of-moments for this. Details can be found

in [1].

Finally, to estimate ξ(s) we assume a priori that

ξ(s) ∼ N(0, σ2
ξ ),

with σ2
ξ estimated off-line as was done for K above (See [1]).

The optimal a posteriori estimate of ξ(s) is

ξ̂(s) = E(ξ(s)|Z) = b(s)
′
ΣZ

−1(Z− μ), (10)

where b(s) =
(
b1(s)

′
,b2(s)

′)′
, and

bk(s) = σ2
ξ

(
I(s ∈ Bk1)

|D ∩Bk1| , . . .
I(s ∈ BkNk

)

|D ∩BkNk
|
)′

.

Although η and ξ(s) are independent a priori, they are not

independent a posteriori because they both depend on the same

data, Z. The formulas for η̂ and ξ̂(s) given in (9) and (10)

are correct, but when we introduce time, this dependence will

become important.

Now using (6) our estimate of Y (s) is

Ŷ (s) = μ(s) + ν̂(s) + ξ̂(s),

= t(s)
′
α+ S(s)

′
η̂ + ξ̂(s),

= t(s)
′
α+ S(s)

′
KS′ΣZ

−1(Z−Tα)

+ b(s)
′
ΣZ

−1(Z−Tα),

= t(s)
′
α+

(
S(s)

′
KS′ + b(s)

′)
×ΣZ

−1(Z−Tα). (11)



We treat α, and therefore μ also, as known, fixed quantities

here. The variance of the estimate is

V ar(Ŷ (s)) =
[(
S(s)

′
KS′ + b(s)

′)
ΣZ

−1
]
ΣZ

× [(
S(s)

′
KS′ + b(s)

′)
Σ−1

Z

]′
. (12)

We can see from the form of (11) that the fusion coefficients

from Equation (4), as = (a1s
′, a2s′)

′
, are given by

as =
(
S(s)

′
KS′ + b(s)

′)
ΣZ

−1,

and are applied to the detrended data, (Z − Tα), prior to

forming the final estimate of Y (s).

The reader may notice that the formulas in (11) and (12)

depend on being able to calculate the inverse of the very large

(N1 + N2) × (N1 + N2) matrix, ΣZ. This is the variance-

covariance matrix of all the data from both instruments at

all locations at which they observe. The form of ΣZ lends

itself to the application of the Sherman-Morrison-Woodbury

matrix inversion formula [2] which allows for computationally

efficient inversion. Details are omitted here in the interest of

space, but can be found in [1].

B. The Multiple Process, Multiple Source Case

The methodology of the previous section generalizes read-

ily to the case of two (or more) quantities of interest, or

“processes”. For example, in this project, the two processes

of interest are two different features of the CO2 column

in the atmosphere: total column CO2, which is observed

by Japan’s Greenhouse gases Observing Satellite (GOSAT),

and mid-tropospheric CO2, which is measured by NASA’s

Atmospheric Infrared Sounder (AIRS) instrument. We let

Y(s) = (Y1(s), Y2(s))
′ be the vector of process values at

location s, where Y1(s) denotes total column CO2, and Y2(s)
denotes mid-tropospheric CO2. All the formulas developed

earlier apply here, but there are now two α’s, two η’s, and

two ξ(·)’s, one for each process.

Define

μC =

(
T1 0
0 T2

)(
α1

α2

)
= TCαC ,

νC =

(
S1 0
0 S2

)(
η1

η2

)
= SCηC , and

ξC =

(
ξ11
ξ22

)
,

where ξkk = (ξk(Bk1), . . . , ξk(BkNk
))

′
. The formula in (11)

holds in the multiple process case with Y for Y , μC for μ,

νC for ν, and ξC for ξ. The formulas for the components

of these terms generalize straightforward ways to the vector

case, as does the variance in (12). Estimation of the required

parameters becomes more complex, but still tractable. Details

can be found in [3].

C. Multiple Process, Multiple Source Space-time Data Fusion

In this section we present space-time data fusion for the

multiple process, multiple source problem. In general, let θ̂t
be the estimate of the quantity θ at time t. Let θ̂t|t−1 be the

estimate of θ at time t based on data up to and including

time t − 1, and let θ̂t|t be the estimate of θ at time t based

on data up to and including time t. The main idea behind

STDF is to use the Kalman filter to update the joint estimate of

(ηt, ξt) at each time step given the previous estimates and new

data acquired at that time point. At time step t we “forecast”

the new value of ηt from the relation (13) (before seeing the

data) to produce η̂t|t−1. Then, after the data for time step t
arrive, we “update” the forecast in light of the data. ξt is not

forecasted at each time step, but is updated jointly with ηt

because the two quantities are statistically dependent.

STDF assumes a state-space model that employs an order-

one, vector auto-regression as the state equation,

ηC
t+1 = Ht+1η

C
t + ζC

t+1, (13)

where ηC
t is an (r1 + r2)-dimensional state vector, and Ht is

the (r1+r2)× (r1+r2) state transition matrix at time t. ζC
t+1

is an (r1 + r2)-dimensional zero-mean Gaussian vector with

covariance matrix Ut+1. Ut+1 is assumed to be independent

of ηC
t . The data observed by instrument k over the footprint

A at time t is generated according to the following model,

Z
(k)
t (A) = μ

(k)
t (A) + S

(k)
t

′
(A)η

(k)
t + ξ

(k)
t (A) + ε(k)(A),

k = 1, 2. We stack the scalars into column vectors and the

row vectors into matrices to form the following model for all
the observed data at time t for instrument k:

Z
(k)
t = μ

(k)
t + S

(k)
t

′
η
(k)
t + ξ

(k)
t + ε

(k)
t , (14)

We again stack the elements of (14) to form a meta-data set,

ZC
t = μC

t + SC
t

′
ηC
t + ξCt + εCt ,

where ZC
t =

(
Z

(1)
t

′
,Z

(2)
t

′)′
, μC =

(
μ

(1)
t

′
,μ

(2)
t

′)′
, ηC =(

η
(1)
t

′
,η

(2)
t

′)′
, ξC =

(
ξ
(1)
t

′
, ξ

(2)
t

′)′
, εC =

(
ε
(1)
t

′
, ε

(2)
t

′)′
, and

SC
t =

(
S
(1)
t 0

0 S
(2)
t

)
.

Given all the data from both instruments at time t− 1, ZC
t−1,

and at time t, ZC
t , the STDF algorithm is:

1) Estimate Kt,t, Kt−1,t−1, and Kt,t−1 where

Kt1,t2 = Cov
(
ηC
t1 ,η

C
t2

)
.

2) Compute the state transition matrix,

Ht = Kt,t−1
′Kt,t

−1.

3) Estimate Ut = Kt,t −HtLt, where Lt = Kt+1,t.

4) The one-step-ahead forecast is

ηC
t|t−1 ≡ E

(
ηC
t |ZC

t−1

)
= Htη

C
t−1|t−1.



5) Estimate the forecasted prediction error matrix,

Pt|t−1 = E

[(
ηC
t|t−1 − ηC

t

)(
ηC
t|t−1 − ηC

t

)′]
= HtPt−1|t−1Ht

′ +Ut.

6) The Kalman gain matrix is

Gt = Pt|t−1

(
SC
t

)′[
SC
t Pt|t−1

(
SC
t

)′
+Dt

]−1

,

where Dt = V ar
(
ξCt + εCt

)
.

7) The updated forecast is

ηC
t|t = ηC

t|t−1 +Gt

(
ZC

t − μC
t − SC

t η
C
t|t−1

)
.

8) The updated forecast prediction error matrix is,

Pt|t = Pt|t−1 −GtS
C
t Pt|t−1.

9) Compute the updated estimate of ξCt|t at the target

location s:

ξCt|t(s) = cCt (s)
′[(

SC
t

)′
Pt|t−1S

C
t −Dt

]−1

×
(
ZC

t − μC
t − SC

t η
C
t|t−1

)
,

where cCt (s) = Cov
(
ZC

t , ξ
C
t (s)

)
.

10) The optimal estimate of Y(s, t) = (Y1(s, t), Y2(s, t))
′

is

Ŷ(s, t) =
(
μC

t (s) + SC
t (s)η

C
t|t + ξCt|t(s)

)
. (15)

11) The mean squared error matrix for Ŷ(s, t) is

V ar(Ŷ(s, t)) = SC
t (s)

′
Pt|tSC

t (s) + σ2
ξ

− cCt (s)
′[
SC
t Pt|t−1S

C
t −Dt

]−1
cCt (s)

− 2SC
t (s)

′
Kt,tS

C
t Σ

−1
t,t c

C
t (s), (16)

where Σt,t = V ar(ZC
t ), and σ2

ξ is a 2 × 2 diagonal

matrix with V ar(ξ(k)) on the diagonal.

IV. ESTIMATING LOWER ATMOSPHERE CO2

We performed multiple process, multiple source, space-time

data fusion to estimate the vector of process values of total

column and mid-tropospheric CO2 on a half-degree grid over

the continental US from February 2010 through December

2010 in two-week blocks. Y(s, t) = (Y1(s, t), Y1(s, t))
′
, here

Y1(s, t) is total column CO2 at location s and time t, and

Y2(s, t) is mid-tropospheric CO2 at location s and time t. The

estimate of lower atmosphere CO2 is a simple linear function

of this vector:

Δ̂(s, t) = (1 − 1) Ŷ(s, t). (17)

The uncertainty of the estimate Δ̂(s, t) is its standard error,

σ(Δ̂(s, t)) =

√
(1 − 1) V ar(Ŷ(s, t)) (1 − 1)

′
. (18)

Our total column CO2 data come from the GOSAT in-

strument, which provides observations on footprints 10 km

AIRS footprint grid
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~ 1500 km
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~ 10 km diameter,  
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~ 700 km
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Fig. 5. AIRS and GOSAT horizontal footprints and vertical measurement
characteristics. In the instrument sensitivity graph, GOSAT is labeled “ACOS”
since JPL’s Atmospheric Carbon Dioxide Observations from Space team
actually produced the data used here.

in diameter and spaced roughly 150 km apart. GOSAT ob-

serves only over land. Mid-tropospheric CO2 data come from

NASA’s AIRS instrument, which observes on 90 km diameter

footprints that are spaced roughly 90 km apart over both land

and ocean. Figure 5 is a schematic diagram of the footprint

geometries of the two instruments. GOSAT was designed

with a very small footprint in order to maximize the number

of cloud-free footprints. AIRS has a very large footprint by

comparison, and it achieves near-global coverage every two

days. These two geometries complement each other, as do

the sensitivities of the two instruments to different parts of

the column shown at the bottom of Figure 5. The primary

difference in sensitivities is in the lower part of the atmosphere,

hence the logic that suggests differencing them to estimate

lower atmosphere CO2.

We organized the data into 21, 15-day periods indexed

by t = 1, 2, . . . , 21 and aggregated all data for period t for

GOSAT into Z
(1)
t and all data for AIRS into Z

(2)
t . The bias

for GOSAT was set to 20 parts per million (ppm) after some

consultation and experimentation (discussed below). The bias

for AIRS was determined to be zero on the basis of our own

comparison of AIRS CO2 retrievals to validation data provided

by the AIRS team. Measurement error variances for the two

data sets were estimated along with the other parameters of

the underlying space-time model discussed earlier. The mul-

tiresolution spatial basis set, S, has three levels of resolution

and 386 multiresolution centers. We produced estimates of

Y(s, t) per Equation (15) for point locations s spaced every

half-degree of latitude and longitude over the continental US
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Fig. 6. Results of space-time data fusion to estimate lower atmosphere CO2
for one time period. The top panel are the estimates, and the bottom panel
are the associated uncertainties.

for each of the 21 time points. The error covariance matrix,

Equation (16), is also computed for each estimate. All that

remains is to compute (Ŷ1(s, t)− Ŷ2(s, t)) from Equation (17)

and its standard error from Equation (18).

Figure 6 shows the results for one representative time

period, with the estimates, Δ̂(s, t), in the top panel and the

corresponding uncertainties, σ(Δ̂(s, t)) in the bottom panel.

Several features are obvious. First, is the prominent hotspot

over New Mexico, but notice also that these estimates have

high uncertainties. The estimate at the center of the hotspot

region is about 10 parts per million (PPM), with a standard

error of 2 PPM. A 95 percent confidence interval for lower

atmosphere CO2 is then [10 − 1.96(2), 10 + 1.96(2)]. The

lower bound of this interval is near 6 PPM and so would not

appear to be quite so outstanding. Second, there is a strong

southwest-northeast gradient that is consistent with what is

known about the effect of net ecosystem exchange: CO2 is

emitted as green plants reach the peak of their photosynthetic

activity in the summer. Finally, note that the standard errors

tend to be higher along the coasts since, with land data only,

there is less neighboring data with which to work.

V. CONCLUSION

We have demonstrated that STDF can be used to leverage

both spatial and temporal dependence to estimate a function

of two spatially continuous geophysical fields from noisy

observations with different statistical characteristics. The maps

in Figure 6 look like they may provide reasonable estimates,

but these have yet to be validated against independent in-situ

observations. It is also worth emphasizing that the validity of

both the estimates and uncertainties depends on the means and

standard deviations of the measurement error distributions and

on other modeling choices discussed earlier. In this exercise,

we used measurement-error statistics based on the judgment

and experience of members of the instrument teams. A more

rigorous analysis will ultimately be required as will a careful

evaluation of the sensitivities of our results to the other

modeling assumptions.

Near-term methodological improvements center on reducing

the duration of a time step in the STDF analysis. Currently, our

method aggregates data over 15 days because the GOSAT data

are sparse, and estimates of statistical model parameters are

unstable with fewer observations. However, CO2 transport oc-

curs on shorter time scales, and the science community would

prefer time steps on the order of three days. We have used

the method of moments to estimate model parameters here,

but we are investigating expectation maximization (EM) as a

more stable alternative. We are also beginning the process of

validating our lower atmosphere CO2 estimates by comparing

them to in-situ observations with the help of the instrument

validation teams.
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