

Developer Tools for Evaluating Multi-Objective Algorithms

Mark E. Giuliano and Mark D. Johnston

Space Telescope Science Institute
3700 San Martin Drive
Baltimore, MD 21218
Giuliano@stsci.edu

Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109
mark.d.johnston@jpl.nasa.gov

Abstract

Multi-objective algorithms for scheduling offer many
advantages over the more conventional single objective
approach. By keeping user objectives separate instead of
combined, more information is available to the end user to
make trade-offs between competing objectives. Unlike
single objective algorithms, which produce a single
solution, multi-objective algorithms produce a set of
solutions, called a Pareto surface, where no solution is
strictly dominated by another solution for all objectives.
From the end-user perspective a Pareto-surface provides a
tool for reasoning about trade-offs between competing
objectives. From the perspective of a software developer
multi-objective algorithms provide an additional challenge.
How can you tell if one multi-objective algorithm is better
than another? This paper presents formal and visual tools
for evaluating multi-objective algorithms and shows how
the developer process of selecting an algorithm parallels
the end-user process of selecting a solution for execution
out of the Pareto-Surface.

Introduction
Effective scheduling of space based astronomy missions
requires the ability to make trade-offs between competing
mission objectives. A typical mission includes many
objectives such as increasing time on target, minimizing
use of consumables, minimizing the use of critical
mechanisms, preferring the highest priority science first,
etc. These objectives are often competing in that
improving one objective means worsening another.
Traditional scheduling optimization techniques are
generally based on a single objective that combines all
criteria into a single value, often by weighting the values of
the individual objectives. However, this necessarily loses
information about the individual components of the
objective, and pre-determines the tradeoff among them.
Multi-objective scheduling techniques allow the retention
of separate objective components and thus for explicit
visibility into trade-offs.

Previous work (Giuliano, Johnston 2010) describes
visualization tools for end-users of a multi-objective
scheduling system. The tools allow multiple distributed
users to explore a Pareto surface trade-off space in order to
converge on a single solution for execution. This paper
builds on the previous results and presents tools from the
perspective of a software developer building a multi-
objective scheduling system.

Algorithms for solving multi-objective scheduling
problems have been developed that are effective in
building a uniformly sampled approximation of the Pareto
surface (Kukkonen, Lampinen 2005). These algorithms
typically have many variants to select from, ranging from
settings of control parameters to alternate decompositions
of a search problem. A developer obviously wants to
select the best possible algorithm for delivery to
operations. Single objective algorithms produce a single
value as output allowing algorithms to be compared
directly. In contrast, each multi-objective algorithm variant
outputs a Pareto surface. A multi-objective algorithm is
better than another if it produces a better Pareto-surface.
The challenge for developers is to compare Pareto-
surfaces. This paper presents a set of tools which allow
developers to compare Pareto-surfaces and demonstrates
the tools using two space based scheduling domains.

The remainder of the paper reads as follows. First, the
system architecture of the multi-objective tools presented
is described. Second, two multi-objective scheduling
domains are briefly described. Third, the problem of
evaluating algorithms is described. Fourth, formal tools
for comparing Pareto-surfaces are described, Fifth,
visualization tools for comparing Pareto-surfaces are
described. Finally, the conclusion describes recursive
relationships found in multi-objective scheduling.

- Minimize the number of orbits that are dropped
from scheduling as they cannot be scheduled
without resource conflicts.

The HST scheduling scenario involves long range planning
for a cycles worth of data (~7000 observations), over the
course of a year and a half planning session. The data and
scenario for these schedule runs was obtained using a snap
shot of the latest operational HST observing cycle.

For the JWST application two types of algorithm variants
are considered. The first varies the number of generations
versus the population size of each generation used in the
MUSE evolutionary algorithm. Given a fixed number of
evolutionary evaluations is it better to search with a large
number of generations but a small population size (deep-
but-narrow), or to have a search with a large population
size but a small number of generations (broad-but-
narrow)? The second algorithm variant considers two
different decompositions of the search. A JWST search
assigns time and roll to an observation. One algorithm
variant assigns both decisions all at once. The other
algorithm variant first assigns time and then performs a
delayed roll search. The HST experimental data varies the
number of generations versus the population size. Both the
JWST and HST applications utilize the SPIKE planning
and scheduling system (Johnston, Miller 1994) to
implement the MUSE domain scheduling engine.

Evaluating Scheduling Algorithms
When evaluating a scheduling algorithm for inclusion in an
operational system a developer must consider many factors
including:

- The performance of the algorithm in terms of space
and time.

- The ability of the algorithm to integrate with other
systems both human and computer.

- The transparency of the algorithm. Is it easy to
understand why the algorithm made a particular
scheduling decision.

- The maintainability of the underlying code base.
- The quality of the solutions produced by the

algorithm over different problem instances.
The factors listed above apply to both single and multi-
objective algorithms. However, single and multi-objective
algorithms differ in how they measure the quality of
solutions. A single objective algorithm produces a single
solution for any problem instance that maximizes an
objective function that combines multiple criteria. The
quality of different single-objective algorithms for a
problem instance can be directly compared using the single
objective function. In contrast, a multi-objective
algorithm produces a Pareto-surface of solutions where no
solution is dominated by another solution for all criteria.

The remainder of the paper concentrates on the problem of
comparing Pareto-surfaces. First, formalisms for
comparing surfaces are defined. Next, we present
visualization tools that allow users to compare surfaces

created by different algorithms. While presenting the
graphical tools we present examples showing how the
formalisms do and do not match our intuitions from the
visual displays.

Note that the process of selecting a scheduling algorithm
can itself be viewed a multi-objective optimization
problem. There are multiple features that can be used to
evaluate an algorithm. Although it would be fortunate, it is
not likely that any one algorithm will dominate in terms of
all the features. The job of the developer is to pick the
algorithm with the best combination of features.

Formalisms for Evaluating Pareto-Surfaces
This section examines the use of mathematical formalisms
for evaluating Pareto-surfaces. (Zitzler et al. 2003)
contrasts unary Pareto surface evaluation functions that
measure the quality of a single Pareto surface with binary
evaluation functions that compare the quality of two Pareto
surfaces. They show that no unary function or combination
of unary functions can tell whether or not a Pareto surface
P1 is strictly better than a Pareto surface P2. That is there is
no function F such that F(P1) > F(P2) if and only if surface
P1 strictly dominates surface P2. In contrast binary
evaluation functions can be designed to tell if one surface
is better than another surface. For example, using the
comparison operator from [Giuliano and Johnston 2008],
first construct the combined Pareto frontier of the two
surfaces Combined(P1,P2). If Intersect(P1,Combined(P1,P2))
== P1 and Intersect(P2,Combined(P1,P2)) == null then
surface P1 dominates surface P2.

If there is no strict domination between surfaces, then we
cannot determine if one surface is better than another. The
purpose of a multi-objective algorithm is to produce a
surface of Pareto optimal solutions so that a user can
explore the space and ultimately select one of the solutions
for execution. If there is no strict domination between a
pair of surfaces, then the combined surface will contain
elements from both input sets and the end user may prefer
an element from either set. Without additional knowledge
no formulation can unequivocally distinguish between
pairs of non-dominating surfaces. In this way the selection
of a multi-objective algorithm is like the selection of a
solution out of a Pareto optimal frontier. Since there are
multiple objectives there is no formal way to make the
selection if there is no dominating solution.

Despite these pessimistic truths analysts and system
developers who code and set parameters for multi-
objective algorithms need tools for distinguishing between
algorithms beyond the notion of strict dominance. In this
paper we explore some formulations that measure the
quality of a Pareto surface and show how the formulations
do and do not match the intuitions obtained from plots of
schedule values. We start with two binary evaluation
functions. The E-indicator [Zitzler, et al. 2003] gives the
factor by which one Pareto surface is worse than another

with respect to all objectives. In other words the value of
E(P1,P2) is the minimum factor e such that for any solution
in P2 there exists a solution in P1 that is not worse by a
factor of e in all objectives. The E-indicator can be used to
detect surface dominance as follows. If E(P1,P2) < 1 and
E(P2,P1) > 1 then P1 dominates P2. If E(P1,P2) is smaller
than E(P2,P1) then the indicator implies that P1 is preferable
to P2. The second binary indicator is based on the naïve
comparison operator in [Giuliano and Johnston 2008]. This
comparison is called the F-indicator and is the fraction of
P1 that occurs in the combined surface. Define F(P1,P2) =
length(Intersect(P1,C))/Length(C) where C is the
combined Pareto surface of P1 and P2, Intersect returns
the set intersection of two Pareto-surfaces, and Length
gives the number of elements in a surface.. By definition
F(P1,P2) + F(P2,P1) = 1. If F(P1,P2) > F(P2,P1) then
according to this metric P1 is preferable to P2. This
corresponds to the intuition that the algorithm that provides
a larger fraction of the combined surface is preferable to an
algorithm that produces a smaller fraction of the combined
surface..

Visualization Tools
A traditional method to displaying a Pareto-surface is to
use a series of X-Y trade-off plots. X-Y plots can be used
to compare algorithms simply by plotting solutions from a
different algorithm with different colours. Although X-Y
plots are intuitive to understand, they have several
problems. First, the number of plots grows geometrically

as the number of objectives increases. Second, it is hard to
connect a point in one plot with the corresponding points in
other plots. An alternate view of the data is a parallel
coordinate plot where each solution is represented by a
single line that runs down the plot vertically. Each criteria
is represented by a row where values are plotted
horizontally on a normalized scale. For example, Figure 2
illustrates both X-Y plots and a parallel coordinate plot for
a pair of JWST schedule runs that vary the number of
generations versus the size of each generation. Figure 3
gives a parallel coordinate plot comparing a pair of JWST
schedule runs that utilize different decompositions of the
search space.

Schedule Run E metric F Metric
Deep-but Narrow 1.61 0.58
Broad-but-Shallow 3.45 0.42
Delayed 1.58 0.60
All-at-Once 1.98 0.40
Table 1: Shows binary performance metrics for two
separate JWST algorithm evaluations.

The E and F metrics for the data in figures 2 and 3 are
shown in table 1. Both metrics prefer the Deep-but-
narrow run over the broad-but-shallow run and the Delayed
run over the All-at-once run. These values correspond to
our intuitions based on examining the plots. However,
neither metric captures obvious features of the graphs. For
example, the deep-but-narrow search performs best for the

Figure 2: Muse Snapshot showing X-Y trade-off plots and parallel coordinate plot comparing two algorithm variants
for JWST scheduling. Blue points represent deep-but-narrow solutions and red broad-but-shallow solutions.

min-dropped and minimum momentum criteria while the
broad-but-shallow search performed best in terms of gaps.
Likewise in Figure 3 the delayed search performs much
better in terms of the momentum criteria. These types of
visual observation are critical to our understanding of the
algorithms but are not apparent in the metrics. While
metrics can detect domination between surfaces and give a
high level comparison of surfaces visual tools provide
needed insight into how surfaces compare to each other. To
this end we developed additional graphical tools for
comparing surfaces.

Coordinate plots solve the problems with X-Y plots in that
all the data for a single point is grouped together and the
number of plots grows linearly with the number of criteria.
However, coordinate plots can become unreadable with a
large number of points on a Pareto-surface. For example,
Figure 4 shows a plot comparing a narrow-but-deep search
(in blue) with a broad-but-shallow search (in red) for an
HST application of MUSE. With so many points on the
surface it becomes hard to understand the data. To this end
we investigated techniques for displaying interesting
subsets of the Pareto-surface. The GDE3 algorithm as
used in MUSE uses a crowding distance measure to reduce
the size of a generation to the population size if the number
of non-dominated solutions in a generation is larger than
the population size. The idea is to prefer solutions with
greater diversity in terms of the criteria. We re-used the
crowding metric to sort the Pareto-surface and to display
the most interesting fraction of the surface. Figure 5
displays the top 25% of solutions for the same experiments
as in Figure 4. The difference between Figures 4 and 5 is
striking. With the full surface, as displayed in Figure 4,
the narrow-but-deep search dominates the display
contributing 76 percent of the solutions. Displaying the
25% most diverse solutions the broad-but-shallow search
contributes the same number of solutions as the narrow-
but-deep search. By examining the most interesting subset
of a surface the tool provides a visualization of the relative

diversity of solutions produced by each algorithm variant.

A key lesson is that no single visualization of a Pareto-
Surface is always the best so a GUI needs to provide
multiple views. With this goal the MUSE interface
provides several additional features that allow a user to
dynamically explore a Pareto-surface. First, MUSE
provides a tabular view of the data that supports dynamic
sorting. Second, we provide a plot for each criteria that
graphs the criteria values in order. Third, the user can
select a solution in one plot and have the point highlighted
in all of the plots. Each of the plots is linked so selecting a
solution or region in one plot highlights the corresponding
solution or region in other plots. Finally the tool provides
the option of scaling each graph to only those points which
are displayed versus keeping a constant scaling.

Conclusions and Future Work
A series of tools were described that allow developers to
evaluate the quality of solutions produced by multi-
objective algorithms. Formal binary evaluation functions
were defined that can detect strict domination between
pairs of surfaces. However these formalisms were shown
to be of limited utility as strict domination of surfaces is
rare, and the formalisms do not manifest structural features
that can easily be seen in graphical displays of surfaces. A
set of dynamic tools were presented that allow developers
to compare and contrast surfaces using different views of
the data.

Several recursive relationships were presented in the paper.
The selection of an algorithm is itself is a multi-objective
problem as a developer has multiple criteria with which to
judge an algorithm including performance, usability, ease
of maintenance, and the quality of solutions selected.
Likewise the process of comparing the quality Pareto-
surfaces is like the process an end user will use to select a

Figure	
 3.	
 	
 A	
 MUSE	
 snapshot	
 showing	
 a	
 parallel	
 coordinate	
 plot	
 comparing	
 two	
 JWST	
 algorithm	
 variants	
 for	
 an	
 all-­‐at-­‐
once	
 search	
 (red)	
 and	
 a	
 delayed	
 search	
 (blue).	
 	

solution out a Pareto-surface. If there is strict domination
the choice is easy, otherwise graphical tools provide the
best way to pick a solution.

The SPIKE team is currently in the process of refactoring
the HST SPIKE engine to be used in JWST (Giuliano et al
2011). As part of this effort a multi-objective component
has been added to the SPIKE core and can be used in both
JWST and HST. As these tools are integrated into
operations visualization tools such as those described
above will be key for both developers and end users.

Acknowledgement

The research described in this paper was carried out at the
Space Telescope Science Institute, and at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration, under the NASA Applied Information
Systems Research Program grant number NNX07AV67G.

References
Giuliano, M.E., and Johnston, M.D. 2008. Multi-Objective Evolutionary
Algorithms for Scheduling the James Webb Space Telescope. In
International Conference on Automated Planning and Scheduling
(ICAPS), Sydney, Australia.

Giuliano, M.E., and Johnston, M.D. 2010. Visualization Tools For Multi-
Objective Algorithms. Demonstration: International Conference on
Automated Planning and Scheduling (ICAPS), Toronto, Canada.

Giuliano, M.E., Hawkins R, Rager R., 2011. A Status update on JWST
Long Range Planning Developments. In IWPSS Darmstadt, Germany

Johnston, M.D. and Giuliano, M.E, 2009. MUSE: The Multi-User
Scheduling Environment for Multi-Objective Scheduling of Space
Science Missions. In IJCAI Workshop on Space Applications of AI,
Pasadena, CA.

Johnston, M.D. and Giuliano, M.E., 2010. Multi-User Multi-Objective
Scheduling for Space Science Missions. In SpaceOps 2010, Huntsville,
AL.
Johnston, M.D. and Miller, G.E. 1994. Spike: Intelligent Scheduling of
Hubble Space Telescope Observations. In Intelligent Scheduling, M.
ZWEBEN AND M. FOX Eds. Morgan Kaufmann, San Mateo, 391-422.

Kukkonen, S. and Lampinen, J. 2005. GDE3: The Third Evolution Step
of Generalized Differential Evolution. In The 2005 Congress on
Evolutionary Computation, 443.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M. and Grunert Da
Fonseca, V. 2003. Performance Assessment of Multiobjective Optimizers:
An Analysis and Review. IEEE transactions on evolutionary computation
7, 117-132.

Figure 4: Muse Snapshot showing X-Y trade-off plots and parallel coordinate plot comparing two algorithm variants for
HST scheduling. Blue points represent deep-but-narrow solutions and red broad-but-shallow solutions. This plot shows
all the data. Note that the blue deep but narrow search dominates the display.

Figure 5. Muse Snapshot showing the 25% most interesting solutions from Figure 4. Note that the
parity between the red broad but shallow search and the blue deep but narrow search in this display.

