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Abstract  
 
Multi-objective algorithms for scheduling offer many 
advantages over the more conventional single objective 
approach.   By keeping user objectives separate instead of 
combined, more information is available to the end user to 
make trade-offs between competing objectives. Unlike 
single objective algorithms, which produce a single 
solution, multi-objective algorithms produce a set of 
solutions, called a Pareto surface, where no solution is 
strictly dominated by another solution for all objectives. 
From the end-user perspective a Pareto-surface provides a 
tool for reasoning about trade-offs between competing 
objectives.  From the perspective of a software developer 
multi-objective algorithms provide an additional challenge. 
How can you tell if one multi-objective algorithm is better 
than another?   This paper presents formal and visual tools 
for evaluating multi-objective algorithms and shows how 
the developer process of selecting an algorithm parallels 
the end-user process of selecting a solution for execution 
out of the Pareto-Surface. 

Introduction 
Effective scheduling of space based astronomy missions 
requires the ability to make trade-offs between competing 
mission objectives. A typical mission includes many 
objectives such as increasing time on target, minimizing 
use of consumables, minimizing the use of critical 
mechanisms, preferring the highest priority science first, 
etc.  These objectives are often competing in that 
improving one objective means worsening another. 
Traditional scheduling optimization techniques are 
generally based on a single objective that combines all 
criteria into a single value, often by weighting the values of 
the individual objectives. However, this necessarily loses 
information about the individual components of the 
objective, and pre-determines the tradeoff among them. 
Multi-objective scheduling techniques allow the retention 
of separate objective components and thus for explicit 
visibility into trade-offs. 

 
 
Previous work (Giuliano, Johnston 2010) describes 
visualization tools for end-users of a multi-objective 
scheduling system.  The tools allow multiple distributed 
users to explore a Pareto surface trade-off space in order to 
converge on a single solution for execution.   This paper 
builds on the previous results and presents tools from the 
perspective of a software developer building a multi-
objective scheduling system.  
 
Algorithms for solving multi-objective scheduling 
problems have been developed that are effective in 
building a uniformly sampled approximation of the Pareto 
surface (Kukkonen, Lampinen 2005).  These algorithms 
typically have many variants to select from, ranging from 
settings of control parameters to alternate decompositions 
of a search problem.  A developer obviously wants to 
select the best possible algorithm for delivery to 
operations.  Single objective algorithms produce a single 
value as output allowing algorithms to be compared 
directly. In contrast, each multi-objective algorithm variant 
outputs a Pareto surface.  A multi-objective algorithm is 
better than another if it produces a better Pareto-surface. 
The challenge for developers is to compare Pareto-
surfaces. This paper presents a set of tools which allow 
developers to compare Pareto-surfaces and demonstrates 
the tools using two space based scheduling domains.  
 
The remainder of the paper reads as follows.  First, the 
system architecture of the multi-objective tools presented 
is described.  Second,  two multi-objective scheduling 
domains are briefly described.   Third,  the problem of 
evaluating algorithms is described.  Fourth, formal tools 
for comparing Pareto-surfaces are described,  Fifth, 
visualization tools for comparing Pareto-surfaces are 
described. Finally, the conclusion describes recursive 
relationships found in multi-objective scheduling.  

 





- Minimize the number of orbits that are dropped 
from scheduling as they cannot be scheduled 
without resource conflicts. 

The HST scheduling scenario involves long range planning 
for a cycles worth of data (~7000 observations), over the 
course of a year and a half planning session.  The data and 
scenario for these schedule runs was obtained using a snap 
shot of the latest operational HST observing cycle.  
 
For the JWST application two types of algorithm variants 
are considered.  The first varies the number of generations 
versus the population size of each generation used in the 
MUSE evolutionary algorithm.  Given a fixed number of 
evolutionary evaluations is it better to search with a large 
number of generations but a small population size  (deep-
but-narrow), or to have a search with a large population 
size but a small number of generations (broad-but-
narrow)?  The second algorithm variant considers two 
different decompositions of the search. A JWST search 
assigns time and roll to an observation.  One algorithm 
variant assigns both decisions all at once. The other 
algorithm variant first assigns time and then performs a 
delayed roll search. The HST experimental data varies the 
number of generations versus the population size.  Both the 
JWST and HST applications utilize the SPIKE planning 
and scheduling system (Johnston,  Miller 1994) to 
implement the MUSE domain scheduling engine.  

Evaluating Scheduling Algorithms 
When evaluating a scheduling algorithm for inclusion in an 
operational system a developer must consider many factors 
including: 

- The performance of the algorithm in terms of space 
and time. 

- The ability of the algorithm to integrate with other 
systems both human and computer. 

- The transparency of the algorithm.  Is it easy to 
understand why the algorithm made a particular 
scheduling decision. 

- The maintainability of the underlying code base. 
- The quality of the solutions produced by the 

algorithm over different problem instances. 
The factors listed above apply to both single and multi-
objective algorithms.  However,  single and multi-objective 
algorithms differ in how they measure the quality of 
solutions.   A single objective algorithm produces a single 
solution for any problem instance that maximizes an 
objective function that combines multiple criteria. The 
quality of different single-objective algorithms for a 
problem instance can be directly compared using the single 
objective function.   In contrast, a multi-objective 
algorithm produces a Pareto-surface of solutions where no 
solution is dominated by another solution for all criteria.   
 
The remainder of the paper concentrates on the problem of 
comparing Pareto-surfaces.  First, formalisms for 
comparing surfaces are defined.  Next, we present 
visualization tools that allow users to compare surfaces 

created by different algorithms.  While presenting the 
graphical tools we present examples showing how the 
formalisms do and do not match our intuitions from the 
visual displays.  
 
Note that the process of selecting a scheduling algorithm 
can itself be viewed a multi-objective optimization 
problem.  There are multiple features that can be used to 
evaluate an algorithm.  Although it would be fortunate, it is 
not likely that any one algorithm will dominate in terms of 
all the features.  The job of the developer is to pick the 
algorithm with the best combination of features. 

Formalisms for Evaluating Pareto-Surfaces 
This section examines the use of mathematical formalisms 
for evaluating Pareto-surfaces. (Zitzler et al. 2003) 
contrasts unary Pareto surface evaluation functions that 
measure the quality of a single Pareto surface with binary 
evaluation functions that compare the quality of two Pareto 
surfaces. They show that no unary function or combination 
of unary functions can tell whether or not a Pareto surface 
P1 is strictly better than a Pareto surface P2. That is there is 
no function F such that F(P1) > F(P2) if and only if surface 
P1 strictly dominates surface P2. In contrast binary 
evaluation functions can be designed to tell if one surface 
is better than another surface.  For example, using the 
comparison operator from [Giuliano and Johnston 2008], 
first construct the combined Pareto frontier of the two 
surfaces Combined(P1,P2). If Intersect(P1,Combined(P1,P2)) 
== P1 and Intersect(P2,Combined(P1,P2)) == null then 
surface P1 dominates surface P2.  
 
If there is no strict domination between surfaces, then we 
cannot determine if one surface is better than another. The 
purpose of a multi-objective algorithm is to produce a 
surface of Pareto optimal solutions so that a user can 
explore the space and ultimately select one of the solutions 
for execution. If there is no strict domination between a 
pair of surfaces, then the combined surface will contain 
elements from both input sets and the end user may prefer 
an element from either set. Without additional knowledge 
no formulation can unequivocally distinguish between 
pairs of non-dominating surfaces. In this way the selection 
of a multi-objective algorithm is like the selection of a 
solution out of a Pareto optimal frontier. Since there are 
multiple objectives there is no formal way to make the 
selection if there is no dominating solution.  
 
Despite these pessimistic truths analysts and system 
developers who code and set parameters for multi-
objective algorithms need tools for distinguishing between 
algorithms beyond the notion of strict dominance. In this 
paper we explore some formulations that measure the 
quality of a Pareto surface and show how the formulations 
do and do not match the intuitions obtained from plots of 
schedule values. We start with two binary evaluation 
functions. The E-indicator [Zitzler, et al. 2003] gives the 
factor by which one Pareto surface is worse than another 



with respect to all objectives.  In other words the value of 
E(P1,P2) is the minimum factor e such that for any solution 
in P2 there exists a solution in P1 that is not worse by a 
factor of e in all objectives. The E-indicator can be used to 
detect surface dominance as follows. If E(P1,P2) < 1 and 
E(P2,P1) > 1 then P1 dominates P2. If  E(P1,P2)  is smaller 
than E(P2,P1) then the indicator implies that P1 is preferable 
to P2. The second binary indicator is based on the naïve 
comparison operator in [Giuliano and Johnston 2008]. This 
comparison is called the F-indicator and is the fraction of 
P1 that occurs in the combined surface. Define F(P1,P2) =  
length(Intersect(P1,C))/Length(C) where C is the 
combined Pareto surface of P1 and P2, Intersect returns 
the set intersection of two Pareto-surfaces, and Length 
gives the number of elements in a surface..  By definition 
F(P1,P2) + F(P2,P1) = 1.  If  F(P1,P2)  >  F(P2,P1) then 
according to this metric P1 is preferable to P2. This 
corresponds to the intuition that the algorithm that provides 
a larger fraction of the combined surface is preferable to an 
algorithm that produces a smaller fraction of the combined 
surface..  

Visualization Tools 
A traditional method to displaying a Pareto-surface is to 
use a series of X-Y trade-off plots. X-Y plots can be used 
to compare algorithms simply by plotting solutions from a 
different algorithm with different colours. Although X-Y 
plots are intuitive to understand, they have several 
problems.  First, the number of plots grows geometrically 

as the number of objectives increases.  Second, it is hard to 
connect a point in one plot with the corresponding points in 
other plots.   An alternate view of the data is a parallel 
coordinate plot where each solution is represented by a 
single line that runs down the plot vertically.  Each criteria 
is represented by a row where values are plotted 
horizontally on a normalized scale. For example, Figure 2 
illustrates both X-Y plots and a parallel coordinate plot for 
a pair of JWST schedule runs that vary the number of 
generations versus the size of each generation.  Figure 3 
gives a parallel coordinate plot comparing a pair of JWST 
schedule runs that utilize different decompositions of the 
search space.  
 
Schedule Run E metric F Metric 
Deep-but Narrow 1.61 0.58 
Broad-but-Shallow 3.45 0.42 
Delayed 1.58 0.60 
All-at-Once 1.98 0.40 
Table 1: Shows binary performance metrics for two 
separate JWST algorithm evaluations.  
 
The E and F metrics for the data in figures 2 and 3 are 
shown in table 1.   Both metrics prefer the Deep-but-
narrow run over the broad-but-shallow run and the Delayed 
run over the All-at-once run.   These values correspond to 
our intuitions based on examining the plots.   However, 
neither metric captures obvious features of the graphs.  For 
example, the deep-but-narrow search performs best for the 

Figure 2:  Muse Snapshot showing X-Y trade-off plots and parallel coordinate plot comparing two algorithm variants 
for JWST scheduling.  Blue points represent deep-but-narrow solutions and red broad-but-shallow solutions. 
 



min-dropped and minimum momentum criteria while the 
broad-but-shallow search performed best in terms of gaps. 
Likewise in Figure 3 the delayed search performs much 
better in terms of the momentum criteria. These types of 
visual observation are critical to our understanding of the 
algorithms but are not apparent in the metrics.  While 
metrics can detect domination between surfaces and give a 
high level comparison of surfaces visual tools provide 
needed insight into how surfaces compare to each other. To 
this end we developed additional graphical tools for 
comparing surfaces. 
 
Coordinate plots solve the problems with X-Y plots in that 
all the data for a single point is grouped together and the 
number of plots grows linearly with the number of criteria. 
However, coordinate plots can become unreadable with a 
large number of points on a Pareto-surface.  For example, 
Figure 4 shows a plot comparing a narrow-but-deep search 
(in blue) with a broad-but-shallow search (in red) for an 
HST application of MUSE.  With so many points on the 
surface it becomes hard to understand the data.  To this end 
we investigated techniques for displaying interesting 
subsets of the Pareto-surface.   The GDE3 algorithm as 
used in MUSE uses a crowding distance measure to reduce 
the size of a generation to the population size if the number 
of non-dominated solutions in a generation is larger than 
the population size.  The idea is to prefer solutions with 
greater diversity in terms of the criteria.  We re-used the 
crowding metric to sort the Pareto-surface and to display 
the most interesting fraction of the surface.   Figure 5 
displays the top 25% of solutions for the same experiments 
as in Figure 4.  The difference between Figures 4 and 5 is 
striking.   With the full surface, as displayed in Figure 4,  
the narrow-but-deep search dominates the display 
contributing 76 percent of the solutions.  Displaying the 
25% most diverse solutions the broad-but-shallow search 
contributes the same number of solutions as the narrow-
but-deep search.  By examining the most interesting subset 
of a surface the tool provides a visualization of the relative 

diversity of solutions produced by each algorithm variant. 
 
A key lesson is that no single visualization of a Pareto-
Surface is always the best so a GUI needs to provide 
multiple views.   With this goal the MUSE interface 
provides several additional features that allow a user to 
dynamically explore a Pareto-surface. First, MUSE 
provides a tabular view of the data that supports dynamic 
sorting. Second, we provide a plot for each criteria that 
graphs the criteria values in order. Third, the user can 
select a solution in one plot and have the point highlighted 
in all of the plots. Each of the plots is linked so selecting a 
solution or region in one plot highlights the corresponding 
solution or region in other plots.   Finally the tool provides 
the option of scaling each graph to only those points which 
are displayed versus keeping a constant scaling.  

Conclusions and Future Work 
A series of tools were described that allow developers to 
evaluate the quality of solutions produced by multi-
objective algorithms.  Formal binary evaluation functions 
were defined that can detect strict domination between 
pairs of surfaces.  However these formalisms were shown 
to be of limited utility as strict domination of surfaces is 
rare, and the formalisms do not manifest structural features 
that can easily be seen in graphical displays of surfaces.   A 
set of dynamic tools were presented that allow developers 
to compare and contrast surfaces using different views of 
the data. 
 
Several recursive relationships were presented in the paper.  
The selection of an algorithm is itself is a multi-objective 
problem as a developer has multiple criteria with which to 
judge an algorithm including performance, usability, ease 
of maintenance, and the quality of solutions selected. 
Likewise the process of comparing the quality Pareto-
surfaces is like the process an end user will use to select a 
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solution out a Pareto-surface.  If there is strict domination 
the choice is easy, otherwise graphical tools provide the 
best way to pick a solution.  
 
The SPIKE team is currently in the process of refactoring 
the HST SPIKE engine to be used in JWST (Giuliano et al 
2011).   As part of this effort a multi-objective component 
has been added to the SPIKE core and can be used in both 
JWST and HST.  As these tools are integrated into 
operations visualization tools such as those described 
above will be key for both developers and end users.  
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Figure 4: Muse Snapshot showing X-Y trade-off plots and parallel coordinate plot comparing two algorithm variants for 
HST scheduling.  Blue points represent deep-but-narrow solutions and red broad-but-shallow solutions.  This plot shows 
all the data.  Note that the blue deep but narrow search dominates the display. 

Figure 5.  Muse Snapshot showing the 25% most interesting solutions from Figure 4.  Note that the 
parity between the red broad but shallow search and the blue deep but narrow search in this display. 
 




