CubeSat Challenge Team

MBSE Applied to the Operation of a CubeSat Mission

In Affiliation with the Jet Propulsion Laboratory, California Institute of Technology

IEEE Aerospace Conference, 2013
CubeSat Challenge Team

- Louise Anderson
- Christopher Delp
- Elyse Fosse
- Bjorn Cole
- Leo Cheng

- Sara Spangelo
- James Cutler

- David Kaslow

- Grant Soremekun

- Manas Bajaj
- Rose Yntema
Agenda

- MBSE Initiative
- Motivation
- Radio Explorer Mission (RAX) using SysML
- Overview of Analysis Demonstrations

Analysis Demonstrations
- Operations Prediction of State
 - Phoenix Integration - ModelCenter
- Spacecraft Control (Flight-Ground)
 - Cameo Simulation Toolkit
- Acausal Analysis & Requirements
 - Paramagic
- Document Generation and Editing

Results

Future Plans
INCOSE Space Systems Challenge Team

- Demonstrate Applicability of MBSE to Space Systems
 - Launched and Operational Mission
 - Sharable
 - INCOSE is an International Organization

- Broad Team
 - NASA, CSA
 - Industry
 - Academia (MIT, GIT, Umich)
INCOSE Space Systems Challenge Team

- **5 years of MBSE Investigations and Demos**
 - FireSat Model
 - Industry and Academic participation
 - Space Systems Library
 - Parametric Library based on SMAD (Wertz & Larson)
 - CubeSat Application
 - Framework
 - Integrated Tools
Better Systems Engineering

Modeling as a Means
Driving Idea: Systems Engineering Specifications

- Systems Engineers in the Space Domain Produce Information
 - Functions
 - Describing the Problem
 - Trades
 - System Functional and Behavioral Design
 - Specifying System Components and Integrations
 - Verification and Validation (V&V)
 - Deployment and Fielding
 - Operational Support
 - Products
 - Analysis (Simulation, Tests, etc)
 - Reports on Analysis
 - Plans
 - Design Descriptions
 - Interface Descriptions
 - Requirements

- Relationships are primarily inter-disciplinary
Challenge: Communication and Consistency

• Challenges
 • Communicating the system in a world of models
 • How do you extract all the rich detail from these simulations into System Specification?
 • DOORS? Documents/Slides/Spreadsheets?
 • How do you assert mutual consistency between models?
 • Meetings? Emails?

• Need an equally rich mechanism for expressing the system design
 – Human readable
 – Machine readable
Role of Languages in MBSE Enterprise

- From multiple points of view
- Capture and express information about the system
- Provide analyzable representations of the system
- Authoritative source of information about the system
CubeSats?

- NanoSatellite (1-10kg)
 - Used for Space Research, Technology Demonstrations

- 1U = 10 cm3, 2U, and 3U

- Ultra Low Cost Missions
 - University/Company Training
 - COTS Hardware

- First CubeSat Launched in 2003
 - Over 75+ CubeSats in Operation

<https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/CubeSat-concept>
Radio Aurora Explorer (RAX)

- Michigan Exploration Lab and SRI International CubeSat mission

Space Weather Missions
- Study plasma irregularities in the ionosphere
- Disturbs Ground-Space Communication and Navigation

Science Experiment
- Bistatic Radar Configuration
- Radar signal transmitted by Incoherent Scatter Radar Site
 - Poker Flats, Alaska

Science Data
- Processed on-board and compressed
- Download to a globally distributed network
- Commanded by control center in Ann Arbon, Michigan
Demonstration Overview

- System Model Description
 - CubeSat Framework
 - RAX Implementation

- Power Prediction Analysis
 - Power loads analysis driven by operational scenario

- Spacecraft Behavior Prediction Analysis
 - Spacecraft state analysis driven by operational scenario

- Communication Design and Requirements Analysis
 - Design criteria and constraints based on design parameters

- Document Generation and Reporting
 - Document and reports of model and analysis
Value of Integrated MBEE

- System Modeling Tools
- View Editor
- Analysis Tools
 - STK
 - Paramagic
 - Phoenix
 - ModelCenter
- Docweb (Document Artifacts)

Authoritative Source
Standard Based Communication and Description
Relatively Low Cost
Mission Adaptable

Each piece of CubeSat Mission modeled
 - Environment, Flight, Ground
Modeling RAX
Communication Subsystem

- Communication Subsystem – Signal to Noise Ratio Analysis
- SysML Parametrics
Power Analysis

- Power Subsystem – Power Analysis
- SysML Parametric
Results & Successes

- Effectively described different views of RAX System
- Analyzed the RAX Model according to common practices in Space Systems Engineering
- Analysis completed with COTS Tools
 - Integrated around standard SysML models
- Demonstrated capability to generate Documents from models
- “Develop With What you Fly With” End to End Integration and Analysis concept
Summary of Issues and Challenges

- Gaps in full integration of Analysis
 - Scalable enterprise access to model data
 - No master orchestrator controlling timing and coordination for all possible analysis execution

- Both SysML and MBSE analysis tools are limited in temporal semantics
 - Time is key factor for space systems engineering
 - Limited applicability of parametrics to behavior aspects of the model
Demo Videos
QUESTIONS?
Backup

- Successes and Challenge for each demo
Power Scenario Demo Overview

Motivation

• “Bringing the model to life”, executing model
• Replaces “hacked” integrated software (e.g. manual/ complex code)

Integrating multiple software tools

• MagicDraw (SysML), Systems Tool Kit (STK), Matlab
• Phoenix ModelCenter (PHX) acts as “glue”

What does this enable?

• “Batch” execution of scenarios (i.e. full time history at once)
• Evaluation if requirements are satisfied/objective
• Test/compare scheduling algorithms (heuristic, optimized, etc.)
• Automatically re-run different scenarios (e.g. vary orbit, network)
• Parametric studies: Sensitivity to vehicle/ network parameters
Power Scenario: Lessons Learned

Useful things we “figured out” (with vendor support):
• Extracting time-dependent parameters (e.g. position in STK)
• Passing vectors between simulators was equally useful in PHX

Things to keep in mind for future modeling:
• Ensure you have required licenses! (may require vendor support)
• Parametric diagrams must inherit inputs/outputs of PHX models
• Exploit existing code/scenarios as much as possible
• Maintain modularity so can re-configure code for different applications
Models are great, still need to support reviews and presentations

Generate document artifacts from the model
 - Leverage ISO 42010 (with some extensions)

Domain Specific Experts and Reviewers should *NOT* have to go back to the model to do their job

Need a way to present the model-based document artifacts to others without requiring others to understand the model.
Challenge Team History

- 2007 – First Challenge Team was Founded

- 2007-2010
 - SysML Model of FireSat (SMAD Textbook)
 - SysML Suitability for modeling space missions

- 2011 – CubeSat Initiative Began
 - CubeSat Modeling Framework
 - Foundation to model/design many current and future CubeSat missions

- 2012
 - Applying SysML Framework to Operational Mission
Timeline of Activity

- Y1: MIT/GaTech Student FireSat Example
- Y2-4: SysML model of FireSat
 - Space Analysis Library using SMAD (Space Mission Analysis and Design textbook, Wertz and Larson)
 - Basic Model of FireSat
 - Solar Panel Trade
 - Satellite Toolkit Integration
FireSat MIT/GaTech Collaboration

- Build an integrated model of FireSat
 - SubSystems in Matlab, STK, Excel
 - Integrated with Phoenix Model Center
 - Student Teams Mentored by Industry Experts from INCOSE SSWG

- Successes
 - Executable trade model for FireSat

- Challenges
 - Difficult to build
 - SubSystem models were difficult to integrate
 - No architecture of the model integration or key parameters
 - Difficult to Audit for completeness correctness
FireSat SysML Model

- Build SysML model of FireSat
 - Learn SysML
 - Describe FireSat using SysML
 - Compare Model Description against typical document representation

- Successes
 - Models of descriptions from book
 - Model views corresponding to documents

- Challenges
 - Technique of modeling and applying the methodology
 - Table representations
 - Model Analysis
 - Document Production
SysML Space Analysis Library

- Build SysML Space Analysis Library
 - Build Library of analysis from SMAD
 - Build approach to VnV for Library

- Successes
 - Libraries for many analysis types
 - Useful testing approach

- Challenges
 - Deep subject – much could not be captured
 - Executability (significantly improved since)
 - Units and Dimensions (significantly improved since)
 - Presentation of equations
FireSat Solar Panel Trade

- Use Library to replicate Solar Panel Sizing Trade
 - FireSat Model and Library -> executable trade

- Successes
 - Successfully built executable trade
 - Hard-linked to requirements
 - Powerful view of driving systems properties

- Challenges
 - Executability (improving since)
 - Debugging
 - Scaling
FireSat Integrated Modeling

- Integrate FireSat SysML Model with Satellite ToolKit
 - Exchange Orbit Scenario properties

- Successes
 - Basic Exchange of Parameters
 - Direct comparison of MBSE in SysML and STK
 - Explicit link between models and requirements

- Challenges
 - Integration
 - Complicated
 - Difficult to Scale
CubeSat: Framework and Method

- Build a Modeling Framework and Method for CubeSats
 - CubeSat Domain-Specific Terms
 - SE Framework for Modeling CubeSat Missions, Spacecraft, and Ground Systems
 - Example Application using RAX Mission

- Successes
 - First version of Framework
 - Early version of multiple executable demos

- Challenges
 - Resources
 - Executability
 - Integration
Consensus of Team

- Modeling with SysML
 - Everything was hard at first
 - Methodology is critical to a model that hangs together
 - SysML simplified construction of basic things like functions and properties
 - SysML tastes like early CAD apps
 - Libraries of model analysis were effective in making solar panel trade
 - Integration with STK

- Document Comparison
 - Model unified properties between views
 - Simplified understanding of the System
 - The common SysML language improved communication between teams and simplified collaboration
 - Automated reports allowed for more time to focus on engineering