Mission Design Evaluation Using Automated Planning for High Resolution Imaging of Dynamic Surface Processes from the ISS

1

Russell Knight, Andrea Donnellan, and Joseph J. Green

Copyright © 2013 California Institute of Technology. Government Sponsorship Acknowledged. This work was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Proposed Eagle Eye Mission

- Understand how Earth's vulnerable systems reflect changes in climate
 - Measure glaciers and sand dunes over time
- Increase understanding of natural hazards
 - Volcanoes, fire, landslides, faults, flooding, coastal change

Vegetation changes can mobilize dunes

Instrument

- 0.5m integral active control
- 1-2 km² visible area
- 45 degree field of regard

Nadir (Canterie)

Unique Measurement Capability

Current Platforms

- Near nadir view
- Off-pointing single images (up to 35)
- Push broom technology
- Stereo Imagery
- Difficult retrieval with uniform albedo

Fixed-point retrieval

- Off-pointing up to 45°
- Collect 10X more images (up to 350)
- Persistence
- 3D recovery
- Take advantage of varying sun angle

Scheduling

6

Given

- Observation targets
 - Lat, Lon, Alt, FPS, Priority
 - based on National Snow and Ice Data Center (NSIDC) glacier inventory
 - Approximately 100,000 points
- Spacecraft and Instrument description
 - Ephemerides, memory (1Tb), collection rate, downlink rate
 - Slewing is fast (1s), but settle is slow (20s)
- Communications sites (Synthetic, likely use ISS comms)
 - Lat, Lon, Alt, min. Elevation

Scheduling (cont)

- Choose a time-stamped ordering of telescope pointing coordinates
 - Cancelling a scheduled lower priority target never enables scheduling of an unscheduled higher priority target
 - Targets are imaged at the optimal times, given a "black box" function that computes quality based on elevation angle, sun angle, and distance to target
 - Twofers are OK

Algorithm

For each observation point, in priority order

Check for feasibility

Memory, Slewing to previous and subsequent points

If feasible, introduce into the schedule and propagate

Extract a solution from the pointing timeline

Check for feasibility

Check that frame rates and data usage cause no constraint violations, and if they do, return **failure**

Generate the set of reasonable pointings P

Remove any member of *P* that is unreachable given the previous or simultaneous pointing

If *P* is empty, return **failure**

- Let *nextP* be the subsequent set of reasonable pointings
- If the intersection of *P* and *nextP* is not empty, return success
- If no transition is possible from any member of *P* to any member of *nextP*, return **failure**

Return success

Generate the set of reasonable pointings

- Given a target point *p*
- For all points that are within a reasonable distance to the target point, project the point paths onto the imager
- Convert to rectangles
- P = the set of squares that cover at least one point and p
- At most quadratic in the number of points simultaneously image-able with *p*

Paths of Points on the Imager

Rectangles on the Imager

Point rectangles a, b, c and p

Pointing a р а С b

Pointing a,b

15

Pointing a, c

Pointing b

Pointing c

Propagate

- Remove any subsequent pointings that are not compatible with P
- Conceptual transition between pointing sets

Extract a Solution

Time

Schedule Fragment in KML

