A Comprehensive Approach to Countering Security Threats

Mike Pajevski
Jet Propulsion Laboratory,
California Institute of Technology
12 June 2013
Introduction

This presentation will delve into the following topics:

• The wide range of security threats

• A comprehensive approach to dealing with security threats

• The need for oversight & guidance

• Managing security risks

• Secure practices & strong security controls

• Some challenges to countering security threats

• Overcoming challenges to countering security threats
Many Security Threats

- Space flight missions are faced with numerous security threats

- Physical Attack
- Counterfeit Parts
- Malicious Sites & Content
- Cyber Attack
- Malware
- Communications Jamming, Interception & Intrusion
- Stolen Documents, Media, Laptops, PDAs, etc.
- Unauthorized Information Disclosure
A Comprehensive Approach

• **Question:** What is a “comprehensive approach”?

• **Answer:** One that covers -
 • Proper oversight & guidance
 • Effective security risk management
 • Secure practices throughout a system’s life cycle
 • Strong security controls, providing:
 - Prevention – stopping attacks from being successful
 - Detection – knowing when you’ve been attacked
 - Resilience – being able to operate even when compromised
Oversight

- Oversight = careful management & supervision
 - It is not simply about checklists and compliance!
 - Checklists are a guide, not a silver bullet
 - Compliance may be a requirement, but not a substitute for thinking

- Why is good oversight important?
 - Provides appropriate objectives and keeps things on track

- What makes good oversight?
 - Effective & efficient processes
 - Document, vet, and measure effectiveness of oversight processes
 - Knowledgeable people
 - There is no substitute for understanding
 - Must have appropriate knowledge & expertise at each level
 - Accountability
 - “Responsibility” & “Ownership” are key
 - Duties and repercussions must be clear, reasonable, & enforced
Layered Oversight

- Oversight is layered
 - More detail each level down

- Requirements and plans defined at each layer
 - Top down approach is important
 - Else Programs/Projects don’t start with complete security objectives

- Reviews conducted at each level
 - Based on defined objectives
 - Use informal and formal reviews
 - Document inputs, results, and action items
Guidance

Good guidance in all areas promotes better security

• Management guidance
 • Security threats, mitigations, and management responsibilities

• Acquisition guidance
 • Supply chain issues, appropriate standard clauses, etc.

• Systems engineering guidance
 • Good security requirements, concepts, and design patterns

• Developer guidance
 • Secure development practices & design patterns

• Validation & verification guidance
 • Security objectives and modeling of security mechanisms
 • Verification techniques for functionality & vulnerabilities

• Operator guidance
 • Secure operation & recognizing/reporting/handling incidents
Managing Security Risk

NIST & ISO define processes for managing security risks

• Prepare for the assessment
 - Define purpose, scope, assumptions, constraints, info sources, and models
 - Good preparation is key to having effective results

• Conduct the assessment
 - Identify threats & vulnerabilities – thoroughness is key to effectiveness
 - Determine likelihood & consequences; combine to determine risks

• Communicate and share risk assessment information
 - Knowledge of security risks is essential to effective risk reductions

• Maintain the risk assessment
 - Keeping the assessment up-to-date is also key to effective risk mgmt

You can’t manage what you don’t know about
- Identifying security risks is the first step in addressing them
- A broad understanding of security risks supports their prioritization
- Don’t wait until the system is built to start assessing your security risks
NIST Risk Mgmt Process

From NIST Special Publication (SP) 800-30 Revision 1:

Step 1: Prepare for Assessment
Derived from Organizational Risk Frame

Step 2: Conduct Assessment
Expanded Task View

Identify Threat Sources and Events

Identify Vulnerabilities and Predisposing Conditions

Determine Likelihood of Occurrence

Determine Magnitude of Impact

Determine Risk

Step 3: Communicate Results

Step 4: Maintain Assessment

NIST = National Institute of Standards & Technologies
Secure Practices

Security is a consideration in processes throughout the life cycle
• Reference NIST SP 800-61, NIST SP 800-64, ISO/IEC 27000:2009

• Think about security when defining operations concepts
 • Who will be involved in the missions; and how does that affect security?
 • How do different approaches (alternatives) alter security of the system?

• Construct a good set of security requirements
 • Involve security experts in the creation of system security requirements
 • Consider the broad range of security issues
 • Make sure requirements are clear, reasonable, and verifiable

• Provide secure environments
 • For design, development, verification, and operations

• Follow secure acquisition and development practices
 • Utilize security design patterns, secure coding standards, code analysis tools, configuration mgmt
 • Include security clauses in acquisition contracts & screen bought components for security issues

• Validate & verify
 • For all types of security requirements
 • Verify functionality and look for vulnerabilities

• Deploy securely
 • Considering the people, processes, and environments involved in the deployment

• Operate securely
 • Make sure operators are trained to recognize and respond to security incidents
 • Define and follow contingency plans that take security issues into account
Strong Security Controls

The wide range of security controls must be effective

• Physical security
 - Guards, gates, surveillance cameras, locks, secure data centers, etc.

• Personnel security
 - Background checks for sensitive positions
 - Training to ensure knowledgeable and thoughtful approach to security

• Network security
 - Firewalls up-to-date, properly configured, uncircumventable
 - Network devices configured according to security best practices
 - Zoned network architecture & traffic filtering

• Secure communications
 - Virtual private networks (VPNs) & secure application layer protocols – properly configured
 - Secure space communications – providing integrity (essential) and confidentiality (as needed)

• Access management
 - Design applications for granular access to interfaces/information
 - Define and enforce authorization policies that reflect real-world policies
 - Use strong authentication mechanisms for critical functions

• Security monitoring
 - Intrusion detection
 - Security logging, auditing, alerting, and reporting
 - System and security control diagnostics
A Few Big Challenges

• Limited resources
 • Limited funding and time to conduct assessment
 • Security expertise is in limited supply

• Wide range of security issues
 • Physical security, personnel security, cyber security

• Keeping up in the race
 • Impossible to “stay one step ahead”
 • Operational realities make it even harder to keep systems up-to-date
 - Difficult to patch systems that must operate continuously

• Poor/missing requirements & incomplete verification
 • Should start defining security requirements early; not as a bolt-on
 • Proper verification is necessary to measure effectiveness

• Misconceptions
 • We are safe because we have a firewall
 - Firewalls have vulnerabilities too & are not a panacea
 - What happens if the firewall is breached?
 • We haven’t had a problem so far
 - How would you know? Are you looking?
Addressing the Challenges

• Deal with limited resources
 • Prioritize security risk reduction based on a thorough understanding of the risks, policies, available resources, and risk tolerance
 • Grow your organization - train people that support risk management

• Consider wide range of risks; but focus on key aspects
 • Delegate security responsibilities across the organization
 • Wide involvement in security risk assessments and reduction planning

• Stay current
 • Develop a process for identifying, incorporating, and testing patches
 • Maintain security awareness through continuous training & education

• Be thorough (and reasonable) in your security requirements
 • Make sure requirements are complete, clear, and verifiable

• Eliminate misconceptions through training & education
 • Don’t underestimate the importance of a good understanding of security
 • Essential for all levels of an organization to be free of misconceptions
Summary

• Space flight systems are faced with various security threats

• Oversight is important to proper management of security risks

• Guidance is an important part of resolving security risks

• Risk Management is the process for identifying, analyzing, and resolving (accepting/mitigating/watching) security risks

• Secure practices are important throughout a system’s lifecycle

• Strong controls are necessary to counter security threats
 • Providing “prevention”, “detection”, and “resiliency”

• System owners must deal with challenges such as limited resources, a wide range of security risks, evolving security risks, poor/missing security requirements, and security misconceptions
References

• International standards:
 • ISO/IEC 27000:2009, Information security management systems — Overview and vocabulary
 • ISO/IEC 27001:2005, Information security management systems — Requirements
 • ISO/IEC 27005:2011, Information security risk management

• NIST Special Publications:
 • NIST SP 800-30 Rev.1, Guide for Conducting Risk Assessments
 • NIST SP 800-39, Managing Information Security Risk
 • NIST SP 800-53 Rev. 4, Security and Privacy Controls for Federal Information Systems and Organizations
 • NIST SP 800-61, Computer Security Incident Handling Guide
 • NIST SP 800-64, Security Considerations in Information System Development Life Cycle
Acronyms

• IEC – International Electrotechnical Commission

• ISO – International Organization for Standardization

• NIST – National Institute of Standards and Technologies

• SP – Special Publication
Questions?