

Automating Stowage Operations for the International Space Station

Russell Knight, Gregg Rabideau, Andrew Mishkin, Young Lee
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

Russell.Knight@jpl.nasa.gov
Gregg.Rabideau@jpl.nasa.gov
Andrew.Mishkin@jpl.nasa.gov

Young.H.Lee@jpl.nasa.gov

Abstract
Stowage operations (the act of storing and retrieving items)
onboard the International Space Station takes up
approximately 25% of each astronaut's time. Until recently,
managing stowage was fundamentally performed by hand
by extremely skilled technicians called stowage officers.
These individuals need to be able to know, by simply
examining a list of items and a location, how much room is
left at a location and if some new item could be placed
there. We have provided a fielded capability that uses a
novel box-packing algorithm combined with a database
search capability to aid stowage officers in their duties.

 Introduction
This paper is organized as such:

1. brief ISS stowage description
2. fast item lookup
3. box packing
4. results
5. related work

ISS Stowage Description
Managing stowage is fundamentally managing the
inventory flying onboard the International Space Station. A
database detailing the contents of each location is used and
updated when the contents change location, are used up,
are lost, or occasionally when they are discovered. As part
of the Automating and Streamlining ISS Mission
Operations (ASIMO) collaboration between the Jet
Propulsion Laboratory and Johnson Space Center, our team

Copyright © 2013 California Institute of Technology, All rights reserved.
This work was carried out by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

examined improving the stowage processes. Through the
use of Certification Based Analysis [Knight 2010], we
determined a set of processes that could be improved if we
could reduce the number of times the products failed
certification (i.e., required further work or failed to be what
the user intended). Three of these processes would benefit
from a capability to automatically find locations in which
to store items. This paper focuses on the technology
delivered for these processes.
 The three processes we focus on are 1) location
suggestion for found material, 2) Prepack list generation,
and 3) Unpack list generation.

Location Suggestion for Found Material
Location suggestion for found material is a two-step
process. This scenario is that an item has been identified
onboard station and a location needs to be found that
accommodates storing the item. The ground personnel
must work with the astronaut to 1) identify the item and
then 2) determine an appropriate location.
 The identification of the item using the database
management system is usually straight-forward, but we
saw the opportunity to improve on this by providing an
interface that allowed any sort of information to be entered
and all fields would be searched automatically on every
keystroke. For example, if an astronaut finds a object, we
could use a description fragment, e.g., “ctb divider” to get
a list of candidate parts that the found item could be. We
could then add details, such as a part-number fragment
e.g., “ctb divider seg3311” which would result in the list
being narrowed down. Of course, we could use the
barcode, but this is not always on the item. Details on our
approach can be found in the Fast Item Lookup section of
this paper.

 Once the item is identified, we have an exemplar to
search for locations. We could simply place the item in the
location that it is supposed to be in, or we might need to
find a new home for it. Once we have identifying
information, such as part number and who owns it, as well
as dimensional information. Since stowage officers prefer
storing similar items together, this is very important
information. We then make use of our Box Packing
technology to suggest several locations to place the item.

Prepack List Generation
Prepack list generation is the process of making a list of
items to be shipped out of the ISS. This list includes bags
to be used and what items are to go into which bags. This
can be quite lengthy, and needs to be updated as the
situation changes. To achieve automation of the prepack
list generation, we use our automated box packing
algorithm to pack the bags with the items that are to be
shipped out. But, we also want to accommodate manual
selection of items and addition of items to the list. This is
aided by our fast item lookup algorithm.

Unpack List Generation
Unpack list generation is the process of making updating a
list of items that are to be shipped to the ISS with the
appropriate locations onboard. This list not only included
items, but also information, such as crew preference
information. Crew preference items are those that should
be stowed in the appropriate crew preference locations;
clearly we want the right underwear to go to each crew
member. As with prepack list generation, we automate
unpack list generation by using our box-packing algorithm
to find locations onboard station for all items being stowed.
Of course, manual selection of destinations is aided by our
fast item lookup capability.

Fast Item Lookup
Our approach to fast item lookup was to pre-compile
search substrings into a lookup table, and the perform joins
across the results using set intersection in memory. This
greatly outperforms database query (which drastically
slowed typing of queries). Typing of any entry results of
instantaneous real-time list updates. Note that this is a
modest database of approximately one hundred thousand
entries and we search across ten fields.
 As a search entry is entered, a set of keys is generated by
breaking up the entry at white space borders. Each key is
then considered to be a filter, and a set of data entries is
generated that has at least one field that starts with the key.
Since this is incremental, the worst case is the generation
of the list for the very first key. As the key is extended, the
list is pared down. When a new key is introduced, a new

list is generated by first copying the set of entries from the
previous key. This allows users to backspace over entries
without having to recompile the lists, although backspacing
through a partial entry does require repopulation, thus we
only perform this when a user has let an updated (partially
deleted) key idle for more than 1/2 of a second. Because of
how we cascade key filter lists, the resultant list of items
that represents the intersection of all lists is simply the
filter list of the last key.

Box Packing
We find it surprising that, even though it seems an obvious
problem to address, very little work is available in the
literature regarding packing a set of 3-dimensional items
into a single 3-dimensional container where the dimensions
of the container are fixed. Most problem characterizations,
such as rectangle packing problems, focus on selecting the
container of smallest dimension that accommodates the
entire list of items. Other approaches fail for small
numbers of boxes (20) or provide loose guarantees on
quality [Miyazawa and Wakabayashi].
 We often have many items in a container (over 30) that
we need to search for and find a set of solutions within a
very short period of time (preferably less than 10 seconds).
Also, the raw branching-factor for 3-dimensional box
packing is very high. Each box can be in one of 6
orientations, and every placed box removes one candidate
location, but introduces 3 more, on average. This results in
a branching factor of at least 12, but can be worse if more
positions are induced due to adjacencies of other
previously placed boxes. All of these factors lead us to
believe that optimal techniques might not lead us to the
best solutions for our problem.
 To reiterate, we have a single 3-dimensional rectangular
solid (a box) that we wish to find a home for. We look
through all of the candidate locations onboard station (also
characterized as 3-dimensional rectangular solids). To
determine whether or not a box can fit in a container, we
add the box to the list of contents for that container, and
then try to pack the entire list into the box.
 Our solver works as such:

1. Order the items in descending order of the sum of
the squares of the length, width, and height.
Assign priorities as such.

2. For the first 5 boxes, search exhaustively for a
solution. If a solution is found, carry on to the
next step, but allow for backtracking if any of the
subsequent steps fail

3. In priority order, attempt to fit each item in the
first location that it will fit in the container. The
orientation chosen should be in order of the

orientation that fits the most items of that size in
the container.

4. If any items fail to be placed in the container,
increase their priority by n, where n is the number
of items.

5. If we have attempted to reorder the items and
failed to completely pack the container 100 times,
fail to line 2.

Ordering the items in descending order of the sum of the
squares of the length, width, and height was found to be
greatly superior to simply ordering by volume or largest
dimension or sum of dimensions. We hypothesize that this
is due to faithfully identifying hard things pack, like long
poles. This also scales with the interior diagonal, which we
think faithfully represents the amount of inflexibility that is
introduced by placing the item in the box.
 The short exhaustive search turned out to be very helpful
in that there often were a few large items in locations that
needed to be carefully placed, and many smaller items that
could fit just about anywhere. The value of 5 might seem
somewhat magical, but consider that there are over one
hundred thousand positions to consider with 5 boxes being
searched exhaustively (approximately 124,416), but over
one million positions to be considered 6 boxes
(approximately 1,492,992). Empirically, the reduced
performance for one more box wasn’t justified.
 The iterative priority-based optimization allowed us to
quickly identify problem boxes and promote their
placement earlier in the packing sequence. Again, this is
due to having some problematic items accompanying many
smaller trivial items. Also, keeping the priority information
between runs where we changed the orientation and
placement of some of the first five items allowed us to
continue progressing through the space of item orderings.
 Finally, choosing orientations first that optimize packing
as if that were the only item and we were trying to fill the
container with the item was helpful in that we often had a
great deal of smaller items that were to be packed into a
location. This heuristic ensures that a good deal of these
could be packed in the case that we were simply packing
200 filters someplace.
 A short note about bags: when packing a cargo transfer
bag, the bag is rather amorphous until it starts getting full,
then it starts resembling a rectangular solid, thus we use
the rectangular solid dimensions to characterize large bags.
Small bags, such as Ziploc bags, often remain amorphous.
To correctly characterize packing these, the items are
removed from the bags and placed in the list individually
to be packed. We rely on the astronauts to figure out how
to squeeze the contents around in practice.

Results
Our results are purely in the form of the delivered system
and our empirical observations on its performance. This
system provides the required functionality for Location
Suggestion, Prepack list generation, and Unpack list
generation.
 Figure 1 shows the entry window and partial search
results for our fast lookup function for location suggestion.
To select any of these, we press the select button, resulting
in the view in Figure 2. Here we select to find a location
for up to 10 items of the same type (in this case, a cargo
transfer bag divider). We kick of the search by selecting
the Get next locations button. We are then presented with a
list of candidate locations, with the number of items
accommodated by the location in parenthesis (Figure 3). If
we select one of these, we can view the various packings,
as shown in Figure 4 (left view), Figure 5 (right view), and
Figure 6 (top view). In each of these views, the bright
yellow items are the dividers that we are trying to place.

Figure 1 Location Suggestion: Item Lookup

Figure 2 Location Suggestion: setting quantity

Figure 3 Location Suggestion: search results

Figure 4 Location Suggestion: Left view of one

candidate location

Figure 5 Location Suggestion: Right view of one

candidate location

Figure 6 Location Suggestion: top view of one

candidate location

Our prepack implementation allows for ingesting a
Microsoft Excel file and adding bags to be prepacked.
Figure 7 shows the display of such a list. Note that items in
yellow and red indicate problems with the input, such as

serial numbers not yet being assigned. Nonetheless, we can
pack these items automatically in a matter of seconds into
the bags, as shown by the Figure 8.

Figure 7 Prepack List: before packing

Figure 8 Prepack List: after packing

Similarly, our unpack implementation allows for ingesting
a Microsoft Excel file and assigning locations to the items
that are in the list. Figure 9 shows such a list. Items in red
indicate that the field for the item in the list does not match
any entry in the database. Nonetheless, we can still
automatically pack these into locations onboard the ISS in
a matter of seconds, as shown by the assigned Final
Locations in Figure 10.

Figure 9 Unpack List: before packing

Figure 10 Unpack List: after packing

The real measurement of performance for this system is in
the reduction of errors on console and the reduction in
errors and workforce for the production of prepack and
unpack lists. Although this application has been online for
only a short period of time, stowage officers have reported
significant reductions in on-console errors having to do
with suggesting locations to astronauts for stowage.
Similarly, the number of people required for prepack and
unpack list generation has been halved, but it isn't clear yet
what the actual impact is due to the retirement of the space
shuttle. Now that SpaceX is delivering payloads to the ISS,
we will soon be able to report on performance
improvements under equivalent or increased workloads.

Related Work
With respect to rectangle packing, Huang and Korf provide
an optimal system in the 2-dimensional space, but again
this is with respect to an adjustable container.
Conversations with Eric Huang led us to believe that while
these techniques might work for smaller instances, the
increased branching factor in a 3-d space would need to be
addressed.
 Miyazawa and Wakabayashi provide an algorithm with
guarantees on worst case performance of a factor of 2.67,
but in practice our approach performs better. This is likely
due to slack introduced by the forced iterative leveling
applied to layers of boxes and possibly due to the
problematic cases of bad orientations for large collections
of homogenous boxes. Future work should compare these
approaches side by side.
 Clement et al provided a prototype system that
addressed spatial constraints with respect to the storage of
items onboard the ISS, but this had to do with planning
operations and moving items to ensure pathways, not with
the actual task of stowage. Very little was implemented
that optimized the packing of the space.

Acknowledgements
This work was carried out at the Jet Propulsion Laboratory,
California Institute of Technology under contract with the
National Aeronautics and Space Administration.
 We acknowledge the tireless efforts of the ISS Stowage
team at the Johnson Space Center. Their deep knowledge
and practical advice aided greatly in the delivery of this
system. Specifically we acknowledge the efforts of Ursula
Stockdale, Casey Johnson, Robert Adams, Kary “Scott”
Smith, Larry “Joey” Crawford, Margaret Gibb, and Roger
Galpin.

References
Bradley J. Clement, Michael J. Iatauro, Javier Barreiro, Russell
Knight, and Jeremy D. Frank. "Spatial Planning for International
Space Station Crew Operations." In Proceedings of the 10th
International Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-SAIRAS-10). Sapporo, Japan, August,
2010.
Eric Huang, Richard E. Korf. "Optimal Rectangle Packing: An
Absolute Placement Approach." J. Artif. Intell. Res. (JAIR) 46:
47-87 (2013)
Russell Knight. "Technology Infusion via Certification-based
Analysis." In Proceedings of the 10th International Symposium
on Artificial Intelligence, Robotics and Automation in Space (i-
SAIRAS-10). Sapporo, Japan, August, 2010.
F. K. Miyazawa and Y. Wakabayashi, “An algorithm for the
three-dimensional packing problem with asymptotic performance
analysis,” Algorithmica, May 1997, volume 18, Issue 1, pp 122-
144.

http://www.informatik.uni-trier.de/%7Eley/pers/hd/h/Huang:Eric.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/jair/jair46.html%23HuangK13

	Abstract
	ISS Stowage Description
	Fast Item Lookup
	Box Packing
	Results
	Related Work
	Acknowledgements
	References

