CubeSat Challenge Team

Using MBSE for Operational Analysis

In Affiliation with the Jet Propulsion Laboratory, California Institute of Technology
Agenda

- MBSE Initiative
- Motivation
- Radio Explorer Mission (RAX) using SysML
- Overview of Analysis Demonstrations
- Analysis Demonstrations
 - Operations Prediction of State
 - Phoenix Integration - ModelCenter
 - Spacecraft Control (Flight-Ground)
 - Cameo Simulation Toolkit
 - A-causal Analysis & Requirements
 - Paramagic
 - Document Generation and Editing
- Results
- Future Plans
INCOSE Space Systems Challenge Team

- Produce a Space Systems example of MBSE
 - Real-world
 - Sharable
 - INCOSE is an International Organization

- Broad Team
 - NASA, CSA
 - Industry
 - Academia (MIT, GIT)
INCOSE Space Systems Challenge Team

- 5 years of MBSE Investigations and Demos
 - FireSat Model
 - Industry and Academic participation
 - Space Systems Library
 - Parametric Library based on SMAD (Wertz, Larson)
 - CubeSat
 - Framework
 - Integrated Tools
Motivation
Driving Idea: Systems Engineering Specifications

- Systems Engineers in the Space Domain Produce Information
 - Functions
 - Describing the Problem
 - Trades
 - System Functional and Behavioral Design
 - Specifying System Components and Integrations
 - VnV
 - Deployment and Fielding
 - Operational Support
 - Products
 - Analysis (Simulation, Tests, etc)
 - Reports on Analysis
 - Plans
 - Design Descriptions
 - Interface Descriptions
 - Requirements

Relationships are primarily inter-disciplinary
Challenge: Communication and Consistency

• Challenges
 • Communicating the system in a world of models
 • How do you extract all the rich detail from these simulations into System Specification?
 • DOORS? Documents/Slides/Spreadsheets?
 • How do you assert mutual consistency between models?
 • Meetings? Emails?

• Need an equally rich mechanism for expressing the system design
 – Human readable
 – Machine readable
Role of Languages in MBSE Enterprise

- **Capture and Express Information**

- **SysML (Systems Modeling Language)**
 - Unifying the Qualitative and Quantitative Descriptive Information
 - *Designed to serve as System Specification*
 - “Machineable”
 - Compatible with a variety of execution and analysis strategies

- **Authoritative Source of information**
CubeSats?

- NanoSatellite (1-10kg)
 - Used for Space Research

- 1U = 10 cm³

- Ultra Low Cost Missions
 - University/Company Training
 - COTS Hardware

- First CubeSat Launched in 2003
 - Over 75+ CubeSats in Operations

<https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/CubeSat-concept>
Radio Aurora Explorer (RAX)

- Michigan Exploration Lab and SRI International CubeSat mission

- Study formation of magnetic field aligned plasma irregularities in the lower polar ionosphere
 - Disturbs ground-space communication and navigation

- Radar signal is transmitted by Incoherent Scatter Radar site in Poker Flat, Alaska and received by RAX for analysis
 - Science data processed on-board, compressed, and is downloaded to a globally distributed network and is commanded from the control center in Ann Arbor, Michigan
Demonstration Overview

- System Model Description
 - CubeSat Framework
 - RAX Implementation

- Power Prediction Analysis
 - Power Loads Analysis Driven by operational scenario

- Spacecraft Behavior Prediction Analysis
 - Spacecraft State Analysis Driven by operational scenario

- Communication Design and Requirements Analysis
 - Determine design criteria and constraints based on ground system architecture and design parameters

- Document Generation and Reporting
 - Document and reports of model and analysis
Value of Integrated MBEE

- Authoritative Source
- Standard Based Communication and Description
- Relatively Low Cost

Analyze with COTS Tools
- MagicDraw (SysML), Systems Tool Kit (STK), Matlab
- Phoenix ModelCenter (PHX) acts as “glue”
- Cameo Simulation Toolkit, system behavior execution
- Intercax- Paramagic and mathematica
Mission Adaptable

Each piece of CubeSat Mission modeled

Environment, Flight, Ground
Modeling RAX
Power Analysis

- Power Subsystem – Power Analysis
- SysML Parametric
System Components & Behaviors
RAX Flight System Behavior

State Machine

End of Life

Activity Diagram

Flight System States

Nominal

Perform Experiment

after (120s)

Experiment

Downlink Station in View

Cor

Send Telemetry

result
data

<valueSpecification> 0

rate

: Comm Downlink Rate

<valueSpecification> 9600

rate

: Comm Uplink Rate

: Comm Data Held
RAX Report Generation
Demo Videos
Results & Successes

- Effectively described different views of RAX System
- Analyzed the RAX Model according to common practices in Space Systems Engineering
- Analysis completed with COTS Tools
 - Integrated around standard SysML Language
- Demonstrated capability to generate Documents
- “Develop With What you Fly With” End to End Integration and Analysis
Summary of Issues and Challenges

- Gaps in what can be effectively integrated with different analysis tools
 - Show independent analysis
 - No way to orchestrate inter-operation
 - Example: Cameo Simulation Tookit integration with Phoenix ModelCenter
 - Behavioral and structural analysis working together

- Both SysML and MBSE analysis tools are limited in temporal semantics
 - Time is key factor for space systems engineering
Acknowledgements
QUESTIONS?
Backup

- Successes and Challenge for each demo
Power Scenario Demo Overview

Motivation

- “Bringing the model to life”, executing model
- Replaces “hacked” integrated software (e.g. manual/ complex code)

Integrating multiple software tools

- MagicDraw (SysML), Systems Tool Kit (STK), Matlab
- Phoenix ModelCenter (PHX) acts as “glue”

What does this enable?

- “Batch” execution of scenarios (i.e. full time history at once)
- Evaluation if requirements are satisfied/objective
- Test/compare scheduling algorithms (heuristic, optimized, etc.)
- Automatically re-run different scenarios (e.g. vary orbit, network)
- Parametric studies: Sensitivity to vehicle/ network parameters
Power Scenario: Lessons Learned

Useful things we “figured out” (with vendor support):
• Extracting time-dependent parameters (e.g. position in STK)
• Passing vectors between simulators was equally useful in PHX

Things to keep in mind for future modeling:
• Ensure you have required licenses! (may require vendor support)
• Parametric diagrams must inherit inputs/ outputs of PHX models
• Exploit existing code/ scenarios as much as possible
• Maintain modularity so can re-configure code for different applications
Document Generation

- Models are great, still need to support reviews and presentations

- Generate document artifacts from the model
 - Leverage ISO 42010 (with some extensions)

- Domain Specific Experts and Reviewers should NOT have to go back to the model to do their job

- Need a way to present the model-based document artifacts to others without requiring others to understand the model.
Challenge Team History

- 2007 – First Challenge Team was Founded
- 2007-2010
 - SysML Model of FireSat (SMAD Textbook)
 - SysML Suitability for modeling space missions
- 2011 – CubeSat Initiative Began
 - CubeSat Modeling Framework
 - Foundation to model/design many current and future CubeSat missions
- 2012
 - Applying SysML Framework to Operational Mission
Timeline of Activity

- **Y1**: MIT/GaTech Student FireSat Example
- **Y2-4**: SysML model of FireSat
 - Space Analysis Library using SMAD (Space Mission Analysis and Design textbook, Wertz and Larson)
 - Basic Model of FireSat
 - Solar Panel Trade
 - Satellite Toolkit Integration
- **Y5->**: CubeSat: An Architecture Framework and Method for Space Systems MBSE
FireSat MIT/GaTech Collaboration

- Build an integrated model of FireSat
 - SubSystems in Matlab, STK, Excel
 - Integrated with Phoenix Model Center
 - Student Teams Mentored by Industry Experts from INCOSE SSWG

- Successes
 - executable trade model for FireSat

- Challenges
 - Difficult to build
 - SubSystem models were difficult to integrate
 - No architecture of the model integration or key parameters
 - Difficult to Audit for completeness correctness
FireSat SysML Model

- Build SysML model of FireSat
 - Learn SysML
 - Describe FireSat using SysML
 - Compare Model Description against typical document representation

Successes
- Models of descriptions from book
- Model views corresponding to documents

Challenges
- Technique of modeling and applying the methodology
- Table representations
- Model Analysis
- Document Production
SysML Space Analysis Library

- Build SysML Space Analysis Library
 - Build Library of analysis from SMAD
 - Build approach to VnV for Library

- Successes
 - Libraries for many analysis types
 - Useful testing approach

- Challenges
 - Deep subject – much could not be captured
 - Executability (significantly improved since)
 - Units and Dimensions (significantly improved since)
 - Presentation of equations
FireSat Solar Panel Trade

Use Library to replicate Solar Panel Sizing Trade
- FireSat Model and Library -> executable trade

Successes
- Successfully built executable trade
- Hard-linked to requirements
- Powerful view of driving systems properties

Challenges
- Executability (improving since)
 - Debugging
 - Scaling
FireSat Integrated Modeling

Integrate FireSat SysML Model with Satellite ToolKit
- Exchange Orbit Scenario properties

Successes
- Basic Exchange of Parameters
- Direct comparison of MBSE in SysML and STK
- Explicit link between models and requirements

Challenges
- Integration
- Complicated
- Difficult to Scale
CubeSat: Framework and Method

- Build a Modeling Framework and Method for CubeSats
 - CubeSat Domain-Specific Terms
 - SE Framework for Modeling CubeSat Missions, Spacecraft, and Ground Systems
 - Example Application using RAX Mission

- Successes
 - First version of Framework
 - Early version of multiple executable demos

- Challenges
 - Resources
 - Executability
 - Integration
Consensus of Team

❖ Modeling with SysML
 ❖ Everything was hard at first
 ❖ Methodology is critical to a model that hangs together
 ❖ SysML simplified construction of basic things like functions and properties
 ❖ SysML tastes like early CAD apps
 ❖ Libraries of model analysis were effective in making solar panel trade
 ❖ Integration with STK

❖ Document Comparison
 ❖ Model unified properties between views
 ❖ Simplified understanding of the System
 ❖ The common SysML language improved communication between teams and simplified collaboration
 ❖ Automated reports allowed for more time to focus on engineering