Maestro Path to Flight Study

Rafi Some, Dwight Geer and Alan Lee
Jet Propulsion Laboratory
California Institute of Technology
May 23, 2011

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.
Agenda

- Motivation & Future NASA Needs
- The OPERA Program
- Maestro Status
- MCP SBC Path to Flight
 - Maestro Processor Path to Flight
 - DDR Path to Flight
 - MCP SBC H/W Development
 - MCP SBC S/W Development
- Conclusions/Recommendations
Future NASA Missions Require High Performance Processing

Mars Observing Opportunities

- Mars Science Laboratory
 - 5-20km in 24 months

Earth Observing Opportunities

Ref: Decadal Survey Workshops and other sources

- HyspIRI*
 - 3.2 TBytes per day data rate

- ASCENDS-CO2LAS*
 - 500 GBytes per hour data rate

- DESDynI*
 - 4.9 TBytes per day data rate

- ACE-MSPI*
 - 95 MBytes/sec data rate for each of 9 cameras

- ExoMars/TGO
- Mars Astrobiology Explorer-Cacher (MAX-C)
- Mars Sample Return
 - Acquire 34 samples
 - 10-30km in 6-12 months

Mars Science Laboratory (based on MRO/Odyssey)

MAVEN Scout

MAVEN Scout (based on MRO/Odyssey)

3 Distinct Classes of On-Board High Performance Processing

<table>
<thead>
<tr>
<th>Class of Computation</th>
<th>Science Mission Applications</th>
<th>Objective of Computation</th>
<th>Computing System Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-throughput Science Data Processing</td>
<td>High resolution sensors, e.g., SAR, Hyperspectral</td>
<td>Downlink images and products rather than raw data</td>
<td>Dedicated payload processors at sensors requiring less stringent fault tolerance</td>
</tr>
<tr>
<td>Short-Duration Real Time (R/T) Burst Calculations</td>
<td>Entry, Descent & Landing (EDL), e.g., vision-based pinpoint landing and hazard avoidance</td>
<td>Achieve most robust results within available timeframe as input to control decisions</td>
<td>High peak performance and compute intensive with stringent fault tolerance and real-time requirements</td>
</tr>
<tr>
<td>Intensive Search-Based Reasoning (may be Non-R/T)</td>
<td>Mission planning, fault management, model-based reasoning</td>
<td>Accomplish opportunistic science; mitigate execution failures via contingency planning; detect, diagnose and recover from faults</td>
<td>Memory intensive, high throughput required, but less real time and less stringent fault tolerance.</td>
</tr>
</tbody>
</table>
OPERA Program Overview
On-board Processing Expandable Reconfigurable Architecture

1999-2006
DARPA
Polymorphic Computing Architecture

2005-2009
DARPA/DTRA
RHBD

OPERA Program
2006-2011
Hardware & Software Development
Oct 06 – Sept 10

49 Core RHBD Chip April 10 and Development Board Sept 10

US Space Community

Tilera Multi-core Processor + RHBD => 49 Core RH Processor

OPERA Components

- **Hardware – Maestro Chip**
 - 49 core general purpose multi-core processor
 - Up to 350 MHz
 - Four - 10 Gbps SERDES XAUI interfaces
 - Radiation Hard By Design (RHBD)
 - Developed by Boeing SSED
 - Uses Tilera Corporation IP
 - Additional third party IP

- **Software**
 - Basic compiler tools
 - Complements Tilera’s toolset
 - Benchmark code
 - Performance and productivity tools
 - Parallel libraries, analyzer, debugger, run time monitor, OS ports

Maestro Provides Good Performance Over a Wide Range of Applications and Comes with a Bundled S/W Suite Supporting Multiple Operating Systems

Maestro, Key Features

- Highest Performance Rad Hard General Purpose Processor
 - Up to 350 MHz, 44 GOPS, 20 GFLOPS
- Tiled Architecture
 - 49 tile, 2-D Processor Array connected by low-latency high bandwidth register-mapped networks
- Tile Processor
 - Main Processor: 3-way VLIW CPU
 - 64-bit instruction bundle
 - 32-bit integer operations
 - Static Switch Processor
 - Floating Point Co-Processor (IEEE 754 single and double precision)
- Memory
 - L1 cache: 2 cycle latency, 8KB I & 8 KB D
 - L2 cache: 7 cycle latency, 64 KB
 - Tiles can access each others L2
 - Off-chip Main Memory: 88 cycle latency
- I/O Interfaces
 - Four XAUI (10 Gigabit Ethernet Attachment Unit Interface)
 - Four DDR2 (double data rate SDRAM)

May 23, 2011
Maestro Status, as of Apr-2011

- Functional and Parametric Tests Completed
 - Passed with Minor Errata

- A JPL Led Maestro Radiation Testing Consortium Has been Organized:
 - Boeing Functional/Radiation test board and Radiation Effects Models
 - JPL / Honeywell co-development of Radiation Test S/W
 - JPL Beam Time

- Maestro development board from Boeing is on track for May-2011 delivery

- Maestro software tools 2.0.2 released

- VxWorks port to Tilera completed

- Lacking Rad Hard DDR Memory
MCP SBC Path to Flight

- Define a Path for a Multi-core High Performance Space Qualified Flight Computer Suitable for use in:
 - High-throughput Data Processing
 - Short Duration R/T Burst Calculations
 - Intensive Search Based Reasoning
- Leverage the Results of the OPERA Program
- Meet Power, Performance, Reliability Requirements at Chip and Board Levels
 - Target the MSL Environmental Requirements (thermal, dynamics and radiation)
- Include Additional Necessary Developments
 - DDR Memory
 - High Throughput I/O
 - Tailoring the Maestro Processor for NASA Missions
 - System S/W and Libraries

Maestro Processor Path to Flight

• Challenges with Flying Current Maestro
 – High Power Consumption and Heat Dissipation
 – Special packaging design required
 – Not space qualified

• Path to Flight will require:
 – Design improvements to address power and fault protection issues
 • Maestro-Lite is a proposed lower power processor
 – Custom package development and qualification
 • Based on MIL-PRF 38535 Class Y
 – Development of a NASA approved qualification flow to include:
 • Qualification of foundry wafer level technology performance
 • Extensive life test and burn-in screening
 • Development of compatible QML level Q/V flow
DDR Memory Path to Flight

- **Challenges with DDR2 Memory**
 - Space qualified Rad Hard/Tolerant DDR2 Does Not Exist
 - High Power Consumption
 - Memory Controller Can’t Tolerate Whole Chip Failures

- **Path to Flight Options for DDR Memory**
 - Commercial DDR2
 - Likely to Meet TID, but not SEE Challenge
 - Extensive up screening of COTS parts
 - Requires an error correction engine (to deal with upsets or chip failure)
 - Power Consumption/Thermal Management issues remain
 - Designing New DDR2 Using RHBD
 - Truly RH DDR
 - Minimized Power Consumption
 - Qualification will require:
 - Qualification of foundry wafer level technology performance
 - Extensive life test and burn-in screening
 - Development of compatible QML level Q/V flow
MCP SBC H/W Development

- MCP Single Board Computer
 - SBC Bridge
 - Requires a bridge function to adapt to the S/C host bus
 - Requires parts qualification/certification for Flight
 - SBC ancillary logic
 - Need space qualified 10GbE components (for Maestro XAUI ports)
 - Need space qualified RMGII (for Maestro Reduced Gigabit Media Independent Interface ports)
 - Requires parts qualification/certification for Flight
 - Qualification will require:
 - Qualification of foundry wafer level technology performance
 - Extensive life test and burn-in screening
 - Development of compatible QML level Q/V flow
 - Mission level environmental requirements
 - End-to-End Development including Qualification Testing
 - Example requirements: MSL Environmental Requirements
 - Goal is for Vendor development and productization
MCP SBC S/W Development

- Enhanced Software Suite
 - Porting Remaining VxWorks Modules to baseline Maestro
 - Porting Parallel Libraries to VxWorks
 - Additional Enhancements for Maestro Lite:
 - Power management
 - Error Detection/Correction on internal buses
 - Ability to route around powered down or disabled nodes
 - Ability to work with arbitrary array configuration
 - Ability to provide time sync
 - Ability to use XAUI port as simple high speed I/O port with min protocol overhead
 - Fault tolerance library

Conclusion/Recommendations

- **Maestro Based Options:**
 - Heat, Power and Fault Tolerance Issues Impose Limitations on Applicability

- **Commercial DDR Die Based Options:**
 - Desired Levels of RH Not Achievable via Packaging Alone

- **M-45nm with RHBD DDR3 Memory**
 - Pushing Technology Farthest Ahead
 - Smallest Footprint, Highest Die Yield
 - Desirable, but Higher Cost

- **M-Lite with RHBD DDR2 Memory**
 - Acceptable Power, Speed, Reliability, Board Level Packaging and Thermal Mgmt.
 - All Known Issues/Concerns/Challenges are Addressed
 - Most likely to Be Adopted by Any Mission without Operation Limitations
 - Best Option based on Near Term Desired Capabilities, Technology, Schedule and Cost
 - Qualification issues must still be addressed
BACKUP
M-Lite, M-LPlus and M-45nm

• **Maestro-Lite (M-Lite)**
 – Address Concerns with Current Maestro
 • Reduce the Number of Tiles from 49 to 25 or 16 for Further Power and Heat Reduction
 – Over 10 W power reduction expected
 • Provide Clock and Tile Management for Further Power and Heat Reduction
 • Improve Fault Tolerance
 – Clock and Cache Size Enhancement
 – Optimize I/O Interfaces

• **Maestro-Lite Plus (M-LPlus)**
 – M-Lite + Modified DDR Controller to Support DDR3
 – Re-layout for Smaller Die and Smaller Package
 – Enhanced Yield and Packaging

• **Maestro-45nm (M-45nm)**
 – M-LPlus + Enhanced Cache and FPU
 – Updated RHBD Lib for 45 nm fab line
 – Smaller Die, Smaller Package and Lower Power