PLM World 2011

JPL PLM Overview

Bill Allen
Jet Propulsion Laboratory
California Institute of Technology
Overview

- Project Lifecycle at JPL
- Product Lifecycle Management (PLM) at JPL
- Top-Down Design Approach for One-Off Prototype
- Typical challenges for business base (MSL Pilot Example)
- Future directions
- Conclusion
Project Lifecycle

Abbreviations
- CR - Concept Review
- PMSR - Preliminary Mission & System Review
- PDR - Project/System Preliminary Design Review
- CDR - Project/System Critical Design Review
- ARR - ATLO Readiness Review
- MRR - Mission Readiness Review
- PLAR - Post Launch Assessment Review
- CERR - Critical Events Readiness Review
Mechanical Systems at JPL

- Products developed require integration of multiple disciplines
 - Design
 - Engineering
 - System Engineering
 - Analysis (Thermal, Structural, Dynamics)
 - Fabrication
 - Propulsion
 - Cabling
 - Ground support, handling fixtures
 - Assembly
 - Testing
 - Planetary protection
 - Quality assurance
 - Data management
Top-Down Design Approach for One-Off Prototype

- Configuration Development
- Capture High level Requirements
- Capture Resources (Mass, Volume, etc.)
 - High level trade studies
 - Low design fidelity
 - Little design re-use

- Establish Interfaces
- Establish lower level Requirements
- Mature design models
- Detailed design trades
- Build component level test hardware
 - Validate component level assumptions

- Detailed designs finalized
- Flight components fabricated
- Assembly of flight components
- Build system level test hardware
 - Validate system level assumptions
Mars Science Laboratory (MSL) PLM Pilot Project overview
Mars Science Laboratory (MSL) PLM Pilot Project overview

• Challenges
 • Need concurrent engineering approach to meet more aggressive schedule and leaner budgets
 • Multiple disciplines
 • Multiple tools
 • Processes in flux due to new tools
 • No history to base standard practices
 • No history to enforce universal usage
 • Complex design involving integration of dynamic subsystems in a multi-event environment
Mars Science Laboratory (MSL) PLM Pilot Project overview

• Results
 • Able to address complicated problems with new approaches and creative solutions
 • Developed custom applications in partnership
 • Obscuration Analysis Program

• Open architecture of platform facilitated greater integration with partnering organizations
• Have learned enough from pilot to establish and enforce appropriate practices and processes for an effective and efficient Mechanical Systems design for future missions
JPL PLM Vision

• Future vision
 • Collaboration environment to facilitate overlay of multi-discipline information
 • Re-use becoming more prominent (improving competitive edge)
 • Global partnering/collaboration expanded
 • Visualization of information becoming key
 • JT-centric environment
 • HD3D
 • Product Template Studio (PTS)

• Have developed a Mechanical Design Center (MDC) facility to accommodate above technology
Conclusion

• Resources becoming more challenging
 • Funding harder to acquire
 • Schedules reducing
 • Missions/Task more complicated
• Innovation mandatory in order to compete
 • Must have innovative tools and processes