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Enable better robotic explorers like rovers and AUVs 
Detect dynamic events with remote sensor networks 

Handle uncertainty during spacecraft flybys, encounters 
More adaptive “passenger” sensor payloads 
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Why adaptive sampling? 

Time 

measurements 



Measurement imbalance Samples lie in the past, but we can 
only change the future.  To plan we must extrapolate beyond the range 
of collected data. 

Need for accurate second order statistics  The value of a 
new observation is related to prediction certainty 

Limited control options The agent may only choose the length 
of time to wait before the next sample 

Computational efficiency Power-limited sensors must react 
quickly to capture transient events. 
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Special challenges of time 
series data 



Relevant background work 
Active learning in general [Cohn et al., 1996] 

D-optimal spatial experimental design [Cressie 1991, Shewry & 
Wynn, 1987] 

Information-optimal sampling for Markov chains [Krause & 
Guestrin 2005, Thompson et al., 2008] 

ARIMA-based adaptive time series models [Law et al., 2009] 
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1. The agent measures a background process that is:  
– slowly-varying 
– scalar  
– with additive white noise  

2. The process varies more rapidly during rare anomalies 
3. The number of measurements is limited by resource 

constraints  
4. The agent can analyze collected data and revise its 

sampling plan on the fly. 
5. We want to optimize information gain with respect to 

the underlying noiseless values. 
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Our assumptions 



An agent observes a time series 
Each timestep has independent variables 
Data collection yields scalar measurements 
Assume the process is generated by an underlying function 
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Formulation 

Measurement noise Underlying function 



Assume measured values are jointly Gaussian-distributed 
Place a prior P(Y) over all observations using a covariance 
function                    
Evaluated between all observation pairs, it forms a 
covariance matrix K such that: 
 
 
A common choice is the squared exponential: 
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Gaussian process model 

Length scale hyperparameter hyperparameters 



For a set of observed locations X we can compute the joint 
predictive distribution of new candidate locations X’ 
The combined covariance matrix: 
 
 
 
 
The predictive distribution, conditioned on observations 
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Gaussian process inference 

Candidate locations 

Measured locations 



Information-optimal design 
• To maximize information gain, just maximize the entropy 

of future observations: 
 
 
 

• Known as Maximum Entropy Sampling (MES) [Shewry & 
Wynn 1987] 

• Greedy observation selection often works well for this 
class of problems 

• Other information-theoretic objectives are possible 
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The squared exponential is the same throughout the input 
space, so it cannot represent local deviations! 
 
 
 
We introduce a new term z(x) that warps the covariance 
function symmetrically around the current timestep to 
model local anomalies in progress 
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Our key innovation: 
Nonstationarity 



z(x) has a constant slope within a neighborhood of the 
current time step: 
 
 
We modify       to adaptively “pinch” the covariance function 
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Forming the z term 

Large        - stationary Small      - locally uncorrelated 



Hyperparameter learning 
• Set z’s neighborhood size manually, to control spatial 

smoothing 
• All other free parameters set through maximum 

likelihood estimation.  The log likelihood is: 
 

 
• Offline fit lengthscales by training the model on the 

background process  
• Online estimate      for each new timestep  

– A cheap one-parameter optimization that depends only on 
local values!   
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Example: 2-state random walk 
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Example: 2-state random walk 
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Underlying 
hidden 
process 

Reconstruction 
from samples 
selected with 
stationary model 

Reconstruction 
from nonstationary 
adaptive sampling 

Time 



Sensitivity to neighborhood 
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Amboy crater experiments 
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Amboy crater experiments 
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A 

B 



Amboy crater experiments 
• Rover-mounted ASD 

field spectrometer 
measuring 0.5-2.5 
microns 

• Use endmember 
materials to create a 
scalar “basalt index” 

• Goal: reconstruct 
surface composition 
over a rover traverse 
spanning 100s of 
meters  
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Amboy crater experiments 
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C B A 

Denser measurements 
over anomaly 

Starting to run low on 
samples! 



Closing thoughts 
• Adaptive time series sampling is a challenging problem 

– Limited visibility 
– Limited control 
– Nonstationary structures 

• Our new method: a principled, information-theoretic approach  
– Can incorporate new covariance relationships, additional 

independent variables 
– Models joint distribution over all future measurements, permitting 

globally-optimal planning 
• A new covariance function represents local nonstationarity by 

reducing temporal correlations within near the current time step.  
– Simple and fast for real time inference and planning 
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Thanks! 
The Amboy data was collected under NASA ASTEP Grant 
NNG04GB66G “Science on the Fly” and performed at Carnegie 
Mellon University.  
 
More generally, this work is supported under the Life in the Atacama 
project by NASA Astrobiology Science and Technology for Exploring 
Planets (ASTEP) Grant NNX11AJ87G.  
 
A portion of this work was performed at the Jet Propulsion 
Laboratory, California Institute of Technology. Copyright 2013, 
California Institute of Technology. All Rights Reserved. U.S. 
government support acknowledged. 
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