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Abstract: The explosive growth in Earth observational data in the recent decade demands a better method of interop-
erability across heterogeneous systems. The Earth science data system community has mastered the art in
storing large volume of observational data, but it is still unclear how this traditional method scale over time as
we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011)
provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search
solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reason-
ing to improve its accuracy in searches. The Earth science user community is demanding for an intelligent
solution to help them finding the right data for their researches. The Ontological System for Context Artifacts
and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make
(AVM) programs need for an intelligent context models management system to empower its terrain simula-
tion subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using
the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper
presents the current data archival methodology within a NASA Earth science data centers and discuss using
semantic web to improve the way we capture and serve data to our users.

1 INTRODUCTION

The Earth science community is facing a big data
problem and it is getting even bigger as we deploy
more high-resolution instruments that produce large
datasets in rapid rate. The NASA Earth Science Data
and Information System (ESDIS) Project manages the
science systems of the NASA Earth Observing Sys-
tem Data and Information System (EOSDIS). EOS-
DIS is a data centric system designed for the pro-
cessing and archiving from NASAs Earth Observa-
tion missions and their distribution as well as pro-
vision of specialized services to users. The major
components of EOSDIS are 12 Distributed Active
Archive Centers (DAACs), 14 Science Investigator-
led Processing Systems (SIPSs), and the EOS Clear-
ing House (ECHO). The DAACs play an import role
within EOSDIS. They are divided into by discipline
with User Working Groups tailored to mission and
objectives of the DAAC. Unlike the traditional data
center, DAACs includes these key tasks

• Support operational ingestion and management of
a suite of space-borne sensors

• Produce data products from remotely sensed and
complementary in situ data sets as required

• Reprocessing data in response of improvements in
the algorithms or to correct errors detected in the
processing

To date, the EOSDIS data holding is approxi-
mately 7.4PB with a 5.4TB average daily growth
(Huang, 2013). These are heterogeneous observa-
tional and improved science data products. They can
be categorized by their science parameters, level of
processing, source platforms and sensors, as well as
in spatiotemporal coverage.

1.1 Open Archival Information System
(OAIS) Reference Model

Most of the NASA Earth science DAACs follow
The Consultative Committee for Space Data Sys-
tems (CCSDS)s Open Archival Information System
(OAIS) reference model (Figure [1]) in building its
data archival systems. The OAIS reference model de-
fines the core functions of an archival system and how
information should be exchanged. In particular, there
are three key messages types, the Submission Infor-
mation Package (SIP), the Archival Information Pack-
age (AIP), and the Dissemination Information Pack-
age (DIP).





Figure 3: The SWEET Ontologies

Some of the users/applications of SWEET in-
clude Linked Environments for Atmospheric Discov-
ery (LEAD) (Droegemeier et al., 2005), Ontology
based Scoped Search Engine and Resource Aggre-
gator for Atmospheric Science (Ramachandran et al.,
2006), Semantically-Enabled Scientific Data Integra-
tion (Fox et al., 2007), Earth Science Information
Partner Federation (ESIP), and Global Environmental
& Earth Science Information System (GENESIS).

3 ENVIRONMENTAL CONTEXT
ONTOLOGY (ECO)

The Environment Context Ontology (ECO), imple-
mented using the Web Ontology Language (OWL),
is a specialized ontology derived from the SWEET
ontologies that comprise the knowledge engine for
the DARPA AVM program. It captures the domain-
specific concepts to define relationships among Earth
environmental concepts. As the brain for the OS-
CAR archival system, the ontology also includes data
management characteristics, data provenance, secu-
rity, data center, and functional requirements. The en-
vironmental context portion of ECO can be divided
into three top-level categories, atmospheric, aquatic,
and land. The concept graphs capture the top-level
concepts OSCAR needs to support.

The Atmospheric context models (Figure [4])
span thermodynamic and particulate influencing fac-
tors. The models provide climactic, ambient state in-
formation. The ontology organizes the environmen-
tal factors in groups distinguished by source and ef-
fect, and level of granularity. The air properties on-
tology encapsulates basic thermodynamic air proper-
ties such as temperature and pressure, which could
be simulated under a controlled environment. At-

mospheric features include primary weather features
such as thermal radiation and wind. The contaminants
branch includes solids and liquids in suspension in the
atmosphere, such as precipitation and particulates.

Figure 4: Atmospheric Concept Graph

The Aquatic context models (Figure [5]) organize
amphibious realms in terms of intensive water proper-
ties, and water motion. Sea states can describe water
motion in a more general fashion, and specifying the
water character can provide further detail. Some of
the sample data used for modeling wave height came
from the Jason-1 satellite acquired through the NASA
Physical Oceanographic Distributed Active Archive
Center.

Figure 5: Aquatic Concept Graph

The Land context models (Figure [6]) focus on
vehicle‘s suspension systems depending on mobility
systems response, which can further be divided into
continuums and obstacles. The continuum is con-
cerned with concepts such as surface roughness and
slope. The obstacles concept can be further divided
into natural and man-made.

3.1 Information Linking using ECO

Data artifacts are linked (Figure[7]) through environ-
mental context and through inference. When artifacts
are archived into OSCAR, such as a context model,
OSCAR can automatically apply reasoning through
the ECO ontology to link the artifacts to the related
functional requirements and data center or test course
metadata.



Figure 6: Land Concept Graph

Figure 7: Linking artifacts through environmental context

There are two kinds of context models (Figure[8]),
Binary Models and Instrumentation Model.

Binary Models include executable or runtime li-
braries. These models are implemented to execute
on a specific platform and generate new model data
through synthesis. These models typically take one
or more Instrumentation Models as input. Environ-
mental context is also used here to link Binary mod-
els with Instrumentation models to guide the user to
obtain the correct inputs to use. When the user finds
a Binary model according to a specific requirement,
the list of Instrumentation model data is automatically
provided.

Instrumentation Models are typically data gath-
ered at test courses or data centers. These data might
be packaged in provider-specific format such as CSV,
NetCDF, XML, etc. The standard input interface to
OSCAR is JSON. Some data massaging and conver-
sion could be required before delivering data into OS-
CAR for archival.

Figure 8: Cross linking between Binary Models and Instru-
mentation Models

4 ONTOLOGIAL SYSTEM FOR
CONTEXT ARTIFACTS AND
RESOURCES (OSCAR)

The Ontological System for Context Artifacts and
Resources is a semantic web-based data system. It
is an intelligent data system that links data artifacts
according to environmental context. The diagram
(Figure[9]) captures the high level system interfaces.

Model Builders: The model builders are special
users of the system. They create and register models
into OSCAR. They also serve as the data curator as
they have the responsibility to maintain the artifacts
they delivered to OSCAR.

Model Users: The model users typically use the
OSCARs semantic search capability to discover the
artifacts they need. The data models can be down-
loaded in various package formats to support the users
local operating environment.

Simulation Environment: The simulation envi-
ronment is the vehicle testbench. It is an environment
to synthesize the vehicle being designed. This auto-
mated environment interacts with OSCAR through its
RESTful interface. It queries and downloads models
automatically. Typically the simulation environment
searches OSCAR according to the predefined func-
tional requirements.

Remote Data: These are data providers or data
centers. Data gathered and/or distributed through
these centers are ingesting into OSCAR for long-term
archive and distribution. Often data produced at these
centers need to be converted to JSON prior to inges-
tion.

Context Model Repository: The context model
repository really consists of two major components, a
database for metadata and a file system for file stor-
age. As a semantic web-based system the database
used is an RDF graph database. OSCAR is designed
to support remote file storage, that is, the RDF graph
database store the URL location of the data files. The
URL can be local or remote.

4.1 OSCAR System Architecture

The Ontological System for Context Artifacts and Re-
sources (OSCAR) is designed from the ground up in
accordance to the RESTfaul service architecture. It
promotes abstraction and separation of concerns, by
considering objects within the system as resources
and each object has a set of operations. The key com-
ponents of OSCAR includes

• Framework for handling RDF/OWL data includ-
ing reasoning.





artifact metadata in many locations such as the
file name, file headers, or the location of the
file. Some metadata extraction are done by in-
ference or derived from existing metadata. Fi-
nally, metadata translation involves mapping the
provider metadata model into the data systems in-
ternal metadata model.

• Data Catalog: This involves longer-term persis-
tence of metadata, linking the artifact with exist-
ing collections, and checking and apply dataset-
specific storage policies. Various data manage-
ment policies also involved such as storage man-
agement, stewardship policies, and security poli-
cies.

• Data Search and Discovery: An efficient and
adequate search capability is as important as ef-
ficiently capturing the data artifacts. Search has
become an important part of our daily comput-
ing lives. We use our favorite search engine to
find our restaurants, movies, articles, and news,
so we can conduct our business. Google and Bing
are considered the ”super-nodes” of information.
Without an efficient and reliable search capabil-
ity, a data center is of very little use to the general
user.

• Data Processing: This usually involves one or
more datasets with the goal of improving or en-
hancing captured artifacts. With NASAs EOS-
DIS, data products are processed at various levels
ranging from Level 0 to Level 4. Level 0 products
are raw data at full instrument resolution. With
higher levels, data are converted into more useful
parameters and formats.

• Data Visualization: Data visualization is an im-
portant service to the users. It serves as an aid for
data selection. It provides decision support and
hazard management when near real-time data is
involved. It is an instrument for conducting sci-
entific researches. Visualization could be as sim-
ple as creating a quick look of a given piece of
data artifact, or it could be as complex as a tem-
porospatial time-lapse display of mash up of data
artifacts.

As we are moving into the era of Big Data, the
fundamentals of these key functions do not change.
However, data centers are challenged to review their
entire system architecture. It challenges them to think
bigger. How will their handling of these key functions
scale with bigger data volume and more complex data
queries and operations? Can their system still able to
deliver the kind of high quality services they are of-
fering now? Our user communty expectation is set by
social media like Facebook and Twitter, and person-

alized web content experiences is the new norm. Data
centers are not just challenged by the volume of data;
they are challenged by their users expectations.

As an intelligent data archival system, OSCAR
provided a reference-architecture for the next gener-
ation of Earth science data system. In particular, it
provided reference to how semantic web should be
applied. Fundamental to all data centers are three key
operations: capture data, store data, and make data
available. With the popularity of public cloud com-
puting on the rise, moving onto the cloud could be
one of the channels in acquiring elastic storage and
reliability. The two key operations directly affected
by Big Data include accuracy in data capturing and
accuracy in searches.

5.1 Multi-Dialects Data Capturing

A data center for Earth science deals with unique
challenges in data capturing. While the push for meta-
data standards such as ISO-19115 and the NetCDF
Climate and Forecast (CF) metadata convention are
influencing how some new data products are being de-
fined, the reality of multi-dialects in metadata speci-
fication is still very much a reality in Earth science
data artifacts. Internally all data centers have “stan-
dards” metadata architecture. It may not be any one
of the existing standards, but rather a composition of
all the current widely used standards as well as some
local requirements. Taking PO.DAAC for example,
its rich data model was shaped by the metadata stan-
dards it has to support, ISO-19115, The Federation
Geographic Data Committee (FGDC), NetCDF Cli-
mate and Forecast (CF), and the EOS Clearing House
(ECHO). The current process in bringing new datasets
into PO.DAAC is to first review the datasets metadata
model and implement a handler that translates the ex-
ternal data model into the internal data model. At
PO.DACC, this process has been streamlined in or-
der to quickly bring in a new dataset. PO.DAAC has
a reusable framework for constructing what it calls a
data handler (Figure[12]). The product-specific han-
dling logics include metadata harvesting and transla-
tion, data packing specification, and interface control.

The framework has evolved over the year and
many of the built-in logics can be parameter-
ized through configuration parameters and environ-
ment variables. The portion that still requires
much manual labor is implementing the physical
mapping between provider metadata attribute(s) to
PO.DAACs internal metadata attribute(s). In the
W3C standard Web Ontology Language (OWL),
the class axioms owl:equivaletClass, rdf:subClassOf,
and owl:disjointWith are axioms used to define spe-



Figure 12: PO.DAAC DMAS Data Handler Framework

cialized relationships between concepts. Through
ontology defined in OWL, computer software can
look beyond the syntactic matches with a system-
atic approach to bridge between different concepts.
Figure[13] shows an example of extending from the
SWEET ontologies and define relationship between
concepts. It is an example of specializing SWEET
and bridging domain-specific conecepts using equiv-
alent class definitions. In the PO.DAACs data handler
framework, the reasoning module should be added as
the bridge from an external data model to the internal
PO.DAAC data model. This reasoning module should
be a component of the PO.DAAC data handler with an
ontology implemented in OWL. When a new dataset
is ready to bring into the data center, the data engineer
only needs to update the data handler ontology in or-
der for the data handler to understand the new dataset.

Figure 13: Extending from SWEET and linking similar
concepts

5.2 Big Data Requires Intelligent
Searches

Search is one of the most common operations we per-
form on a regular basis. Before the days of computer,
we conduct our researches by searching through card

catalogs at a library. Often we had to work with
several catalogs including books, publications, and
medias. We search for a restaurant through phone-
books and when we arrive at the restaurant we search
through their menu. In the era of relational database
(RDB) (Codd, 1970), searches are performed by us-
ing the Structured Query Language (SQL). The rela-
tional part of RDB is defined by the foreign keys be-
tween database tables. Database normalization (Date,
2003) is a process for organizing tables in order to
minimize redundancies and dependencies. The higher
the Normal Form (NF), the smaller the database ta-
bles, which causes slower more complex database
searches. While SQL is designed to be a flexible and
intuitive query language, the maintenance of complex
join queries is a nontrivial task.

Inverted index (J. Zobel, 1998) is an indexing data
structure by mapping words to location in a database
or documents. The conventional on-the-fly document
parsing has proven to be very inefficient, since the
time required depend on the number of the documents
and the size of each document to be parsed. Cre-
ating a mapping of words to the documents enables
fast full text searches. The popular Apache Solr enter-
prise search engine is deployed in various Earth sci-
ence data centers and services. PO.DAACs metadata
discovery service (Huang et al., 2011), an implemen-
tation of OpenSearch (Ogbuji, 2007) supports various
metadata standard translation, is backed by Apache
Solr, the entire PO.DAAC catalog is being incremen-
tally indexed throughout the day.

The keywords indexed search approach can pro-
vide fast access to documents that are tagged or con-
tain the matching keywords. While Solr does support
some fuzziness and is also equipped with a built-in
dictionary, the solution does not get into the mean-
ing behind the keywords or any inference that could
be derived. Another limitation is that it does not ad-
dress any relationship between various pieces of ar-
tifacts. OSCAR demonstrated it is possible to create
a sophisticated linked data system through ontology.
In Earth science, observational data could be inferred
through temporospatial, cause and effects, and natural
phenomenon. Science users are already demanding
better approach on helping them find the right datasets
for their research. Searches in Earth science data sys-
tems must be more intelligent and organic. Not only
does a search need to be able to coordinate between
artifacts, it must also take into account user behav-
iors. User behaviors include frequent searched pat-
terns, popular download metrics, online discussions,
and user feedbacks.



6 CONCLUSIONS

The next generation of science data system
(SDS.NEXT) must include knowledge. It must
be able to quickly capture data artifacts from all data
sources. It must be able intelligently identify the
collection of datasets that are relevant to the intent
of the users. It must be able to dynamically and
intelligently link data artifacts together to deliver
a complete picture of the data to the user. It must
also be able to identify any relevant datasets through
inference. Googles Knowledge Graph is a good
example of what semantic search (Li and Yang, 2008)
can deliver. As we are progressing toward the age
of Big Data, it is time for Earth science data centers
to consider adding knowledge and reasoning to their
current pipelines.
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