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CLARREO SDT Tasks

* Uncertainty analysis for > 20 km (Stratosphere)
e Uncertainty analysis for <5 km (Lower Tropo)

o ldentify key sources of systematic error in refractivity
o Evaluate via simulation & analysis of current RO data
o Investigate mitigation approaches

* Climate data analysis using existing RO data
(2001-): Collaboration with Stephen Leroy
(Harvard)
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Stratosphere ( > 20 km)

 Atmosphere is tenuous so measurements
need to be more accurate.

e Systematic error sources:
— lonosphere
— local multipath

— thermal noise (lead to bias through upper
boundary condition)

— GNSS & LEO clocks

— orbits (incl. antenna phase center relative to s/c
center of mass)



lonospheric Residual

* lonospheric residual error arises from
incomplete cancellation in the standard dual-
frequency correction. It is arguably the worst
kind of error for climate benchmarking.
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e Standard dual frequency correction
removes leading error term (1/f?).

* The remaining leading error is of order 1/f*
and is due to the slightly different raypaths
for different frequencies.

Eg. (1) _ |1t f2
Bending angle correction ac(a) = [f12 _ f22] ai(a) — [flg _ f22] az(a)
Eq. (2) 2 & o Nz

Residual error in bending ~ Aa(a) [Syndergaard, 2000]
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New GNSS Frequencies

* Will new GNSS signals (e.g. L5=1176.45 MHz)
be useful in reducing the ionosphere residual
error?

* The leading residual error will cancel out with

the combination
2 2
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But small denominator will lead to >10x increase
In noise.



Upper Boundary Condition (UBC)
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UBC For Climate

* Use data as high as possible to reduce
systematic error.

* Reduce random error through vertical
smoothing (sacrifice vertical resolution).

* Don’t use variable upper boundary heights
based on noise level (statistical optimization
approach): difficult to assess model influence.



Lower Troposphere

Fine-scale water vapor structure create
challenging condition for signal tracking and
retrieval.

Negative bias mainly below ~ 2 km altitude.
Noise-dependent positive bias as high as 5 km.

Depth penetration: not all profiles are
retrieved down to the surface.



Positive bias

when SNR is
low
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(Time-dependent) biased sampling
inhomogeneity problematic for CLARREO
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Causes?

1. Signal tracking: Drop in correlation
amplitudes due to frequency & delay
mismodeling in open-loop tracking.

2. Horizontal inhomogeneity: horizontal
gradients (in occ plane and/or out of plane)
can lead to CT amplitude drop or fluctuation.



Tracking GNSS RO Signals

) Correlation Amplitude,
Signal amplitudes |, Q phase

(Modulated)
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* In close loop tracking, the frequency and delay models
are generated based on previous measurements.

* In open loop tracking, a priori frequency and delay
models are supplied.
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Frequency model offset
causes amplitude
reduction & cycle slips.

Correlation Amplitude
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Negative N-Bias

* There exists a negative bias below ~ 2 km
altitude.

— Bending angle bias: insufficient tracking depth

(large bending systematically missing), horizontal
inhomogeneity (vertical features are smoothed
out).

— Refractivity bias not due to bending bias: in the
presence of critical refraction layer, Abel-retrieved
refractivity is systematically smaller below the
layer.
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Refractivity [N—Unit]
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Deep Tracking Experiment

* To evaluate possible bending angle bias due to
truncation of measurement, COSMIC FM1
receiver firmware was modified to track
setting tropical ROs down to -350 km line-of-
sight altitude (normally ~ -180 km) for ~ 1 day
in Oct 2010.

* There are ~ 40 cases, with a few cases
showing signals below -200 km LSA.

 More data (longer experiment) needed!



Some Interesting Cases
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Positive N-Bias

* Refractivity from low SNR tropical occ is found
to be positively biased relative to high SNR occ
(~ 1% at 3-4 km altitude) [Sokolovskiy et al.

2010].

* Believed to be caused by nonlinear noise
propagation in the retrieval process (random
phase noise -> + biased bending angle).

* Higher SNR and higher sampling bandwidth
should reduce this bias.
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Figure 4. The noise band of RO signal in time-frequency and impact parameter-bending angle represen-
tations (for details, see text).

Sokolovskiy et al. 2010
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Summary

 We plan to perform uncertainty analysis
beyond the baseline 5-20 km and investigate
mitigation methods.

* For stratosphere, ionospheric residual error is
likely to have solar and diurnal variability and
thus most problematic for climate. The
refractivity uncertainty due to this (and other
errors) depends on how the Abel upper
boundary condition is imposed.



Summary (Cont’d)

* |In the lower troposphere, there are 2 regimes,
0-2 km and 2-5 km.

— For 2-5 km, needs better understanding/constrain
of the positive N bias due to noisy data.

— For 0-2 km, needs better understanding of
negative bending & refractivity biases, plus the
issue of depth penetration.

 What levels of accuracy will be required by
CLARREO science in these altitudes?



Coupling to TriG Development

* TriG is designed to reduce the refractivity
uncertainty in the stratosphere and lower
troposphere:

— Tracking of modern GPS, Galileo, and possibly
GLONASS signals.

— 3x higher phase precision relative to COSMIC from
USO, higher antenna gain, L2C.

— Higher sampling bandwidth (0.1 — 1 kHz) and
more correlators mean better tracking and higher
SNR.



GRASP Mission Concept

 Geodetic Reference Antenna in Space:
improves terrestrial and celestial reference
frames accuracy by providing a geodetic
“super-site” that colocates GPS, SLR, DORIS,
VLBI sensors on a stable well-modeled
platform above the atmosphere.

* Venture EV-2 proposal led by Yoaz Bar-Sever
(JPL) and Steve Nerem (U. Colorado). Target
launch 2016/7.



CLARREO Connection

* A well-calibrated GPS receiver will be flown as
part of GRASP. This will improve SI-
traceability of the RO instrument by providing
excellent transmit antenna phase center
calibration, low local multipath, and very
accurate orbits.

* RO is not part of the mission now, but could

be put on as part of a broader CLARREO or
climate-related initiative.





