Construction of an Athena-Like Economics Model

Irregular Warfare Modeling & Simulation Summit
17 – 19 May 2011

Jet Propulsion Laboratory
California Institute of Technology

Topics

• Athena-like models
 - Single-user simulation of consequences of long-term S&RO operations
 - Athena models focus on physical effects, political control, information, intelligence, civilian attitudes, demographics, and ... economics

• Why a computable general equilibrium (CGE) model is at the focal point of the economics model

• Recipe for an Athena-like economic model
 - Isolate the CGE part of the economic model
 - How to derive the CGE equations
 - Sector examples: Competitive producers, black markets, the populace, sectors without products (regional political actors, rest of region, rest of world)
What is a CGE?

- A CGE is a set of simultaneous non-linear equations that describe all the flows of value between sectors in an economy
 - Usually, money flows in one direction, goods & services in the other
 - A few equations describe how the economy works together to determine prices and quantities
 - Many of the equations describe how each participant chooses to use its income
 - One equation determines how much a dollar (rupee, etc.) is worth

- A CGE contains a lot of assumptions
 - What is exogenous (input) and what is endogenous (computed)?
 - Character of the economy — free markets? price controls? quotas?
 - How participants make decisions — maximize profit? maximize utility?
 - Production technology — e.g., how substitutable are inputs?
Does Credibility *Require* a CGE model?

• CGE methodology has been developing since 1960

• “CGE models today are routinely used by governments in policy formulation and debate”
 - IFPRI has published a template, with computer code in GAMS

• CGEs can use “social accounting matrix” (SAM) data to get parameter values that fit a real country
Why use a CGE instead of a DSGE?

• Dynamic stochastic general equilibrium (DSGE) models
 ✷ DSGE research is a hot topic among theoretical economists
 ✷ Basic idea: Participants make decisions on uncertain expectations
 ✷ Immense data requirements: Time series of social accounting matrices
 ➢ Works well in a stable society with unchanging policy variables
 ➢ Effects of changes in policy variables must be modeled
 ➢ But decision makers (producers and consumers) won’t rely on trends in chaos

• Computable general equilibrium (CGE) models
 ✷ Have a good track record and are still the primary choice for actual use
 ✷ Athena’s sector models respond to stimuli from demographic, political, military, and information models (and vice versa)
 ✷ In a broken economy, today’s data in a CGE may produce a *better* prediction of tomorrow than an extrapolation of past data in a DSGE
 ✷ Distinguishing *shape* and *size* parameters (discussed later) may make data from similar countries and recent times relevant
“Equilibrium”?!

• First: Interpret value flows as rates, not annual amounts

• Second: Only prices, production rates, jobs reach equilibrium

• Third: All slow or delayed phenomena are outside the CGE
 ✴ Ground model: production capacity, feedstocks, inventories, ..
 ✴ Demographics: available labor force, number of consumers, insurgent recruitment, urban drift, effects of neighborhood security, wages, …
 ✴ Politics: tax rates, baksheesh, political actors’ spending profiles, …
 ✴ Attitudes: neighborhood security, …
 ✴ Information: mitigation and tweaks to any of the above, …
Using a CGE in an Athena-Like Model

• Make a second pass through the CGE for latent demands

• Rest of simulation controls how CGE operates

• Honor the “laugh test”
 ✧ Producers maximize profit, but profit is zero — NO GOOD!
 ✧ Labor supply = labor demand, so unemployment is zero — NO GOOD!
Usable Data

• Data availability will always be an issue because past changes are a fact of life and future changes are an objective in an S&RO environment
 ✷ Historical SAM data has questionable applicability
 ✷ The shape vs. size distinction should allow use of data from nearby regions and recent times

• Shape and size parameters
 ✷ Shape: Relative expenditures, mostly driven by technology in use
 ✷ Size: Total expenditures, mostly driven by demographic changes and the scenario design
Recipe for an Athena-Like CGE

• Isolate the CGE and select sectors of interest
 ✷ KISS, but include sectors needed for all relevant issues
 ➢ Black markets — Yes, but prices are not competitively determined
 ➢ Subsistence agriculture — No, deal with that in demographics
 ✷ Increase resolution later by splitting sectors & reassessing equations

• Economy-wide equations
 ✷ Total demand for each sector’s product or factor of production is the sum of amounts demanded by all sectors
 ✷ Product prices drive quantities demanded and quantities produced
 ✷ CPI defines the value of a dollar (as gold = $35/oz did during 1946–1971)
 ✷ Available labor (and other factor quantities) are exogenous
 ➢ Actual amount used (e.g., the number of people working) is the smaller of supply and demand
Recipe — Sector-By-Sector Equations

• **Revenues**
 - Identify all sources of revenue
 - But compute the total revenue by summing payments to the sector

• **Costs**
 - Budgets must balance unless the sector supplies or absorbs money
 - Expenditures describe the aggregate behavior of the sector
 - Include savings, taxes, tax-like payments, normal profits, “net revenues”
 - Behavior
 - Do producers choose inputs that maximize profit?
 - Do consumers choose purchases that maximize utility?
 - Some sectors’ behavior may be outside the scope of the CGE

• **Net revenues**
 - Net revenues are the difference between Revenues and Costs
 - Competitive markets drive this “excess profit” to zero in equilibrium
Example — *goods*, A Competitive Producer

• Revenues can be expressed two ways
 ◦ Sum over sectors of *product price* times *sector demand*
 ◦ *Product price* times the *quantity produced*
 ◦ Thus, *sector demand* equals *quantity produced* (at equilibrium)

• Behavior
 ◦ Produce just enough quantity to match demand (no wasted output)
 ◦ Buy just enough of every input to make the output (no wasted inputs)
 - Technology of production is described by a production function, which describes relationships between input amounts and prices (thus, prices)

• Costs
 ◦ Pay for all inputs at their endogenously determined prices
 ◦ Pay taxes and make tax-like payments to *actors*, *region*, and *world*

• Net revenues
 ◦ Since normal profits are treated as a cost, net revenues are zero
Example — *black*, A Black Market

• **Revenues, as with *goods*,**
 - Sum of *price* times *demand* equals *price* times *production*
 - But black market prices are driven by exogenous world markets

• **Behavior**
 - Produce just enough to match demand
 - Unless limited by capacity or by the supply of feedstock
 - Buy inputs efficiently, which is described by a production function

• **Costs**
 - Pay for imported feedstock and all other inputs
 - Make tax-like payments (mostly bribes and baksheesh, I presume)

• **Net revenues**
 - Net Revenues (economists’ “profit”) is Revenues minus Costs
 - The black market is a major source of income for some political actors
Example — *pop*, The Populace

- **Revenues**
 - Payments for labor (and other factors of production if modeled)
 - The number of jobs is the sum of sector demands for labor
 - Also, government transfers, remittances, foreign aid, NGO aid
 - Exogenous

- **Behavior**
 - The demographics model determines the size of the labor force
 - Consumption choices spend all after-tax income to maximize “utility”

- **Costs**
 - Pay for consumption (based on number of consumers, not workers)
 - Pay taxes and make tax-like payments on wages, not total revenues

- **Subsistence agriculture**
 - Usually omitted from Gross Domestic Product calculations
 - Value the work of people engaged in subsistence agriculture at the wage associated with the poverty line
Example — *actors*, Regional Political Actors

- **Revenues are the sum of all payments to *actors***
 - Net revenues from the black market
 - Earnings from some sectors, perhaps
 - Tax-like payments
 - Government stipends, perhaps

- **Behavior is modeled in the political model**
 - Actors attempt to achieve their goals by selecting tactics
 - Tactics can include accumulating money
 - Actors’ choices of tactics are constrained by money & other assets

- **Costs**
 - When the actors have selected tactics, their expenditures are summed in the political model and reported to the CGE

- **Net revenues**
 - Since the political model tracks actors’ asset levels, the *actors’* net revenues may often be non-zero in the short term
Example — *region*, The Rest of the Region

- **Revenues**
 - Supplies production capacity to the *black* and *goods* sectors, collecting tax-like payments in return
 - Collects tax-like payments from the workers in *pop*
 - Receives that part of foreign aid that does not get passed on to *pop*

- **Behavior**
 - Not modeled; assumed to be described by an editable budget

- **Costs**
 - All revenues are distributed according to the budget percentages

- **Net revenues**
 - Zero; deficit spending may be allowed in some later version
Example — *world*, The Rest of the World

- **Revenues**
 - Supplies imported feedstock to *black*
 - Collects taxes or tax-like payments from other sectors

- **Behavior**
 - Not modeled; assumed to be described by an editable budget
 - Cash flows that do not involve any sectors in the region are ignored
 - E.g., Foreign actors’ troops’ paychecks are outside the scope of the model

- **Costs**
 - Buys exogenous amounts of exports from *black, goods, pop*
 - Passes part of exogenous foreign aid to *region*
 - Gives exogenous government transfers, remittances, part of foreign aid, NGO aid to *pop*

- **Net revenues**
 - The rest of the world may be a net source or sink of money
Summary

• Credibility may require use of a CGE in the economic model
• Simulate slow and delayed phenomena outside the CGE
• Distinguishing shape and size parameters makes data usable
• A CGE is a set of simultaneous non-linear equations in P & Q
 ✤ Total quantity demanded for each output = sum of sector demands
 ✤ Q supplied (prices) = Q demanded (prices) or min(that, capacity)
 ✤ Set the value of a dollar from a base case or otherwise (numeraire)
 ✤ Sector spending behavior is modeled, most spend all their revenues
 ➢ Models describe assumed behavior under constraints (optimal?)
 ✤ Run the CGE with & without production constraints to get shortages
 ✤ Parameters and inventories are modeled elsewhere in the simulation
 ✤ Increase resolution by splitting sectors and re-deriving equations