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ABSTRACT

Remote sensing and astronomical image formation is often
complicated by deficiencies in measurement quality, density,
or diversity. Penalized likelihood methods can incorporate ad-
ditional first-principles physical prior knowledge and improve
the image reconstructions, but a systematic bias is unavoid-
able as a consequence. This work derives theory to under-
stand the bias and develops a computational tool to probe its
effect on the reconstructed image and bound resolution lim-
its. Though the focus is on image formation, the contributions
of this paper apply to any inference problem that can be ex-
pressed under the linear state-space signal model.

Index Terms— remote sensing; multidimensional signal
processing; recursive estimation; Kalman filter

1. INTRODUCTION

Inverse problems involving line integral or tomographic pro-
jection measurements are common in remote sensing and as-
tronomy, with applications ranging from radio interferometry
to solar tomography [1]. Many inversion methods exist to
solve these problems but each makes certain a priori assump-
tions to trade-off a bias in the solution for increased stabil-
ity [1]. This work derives a method to quantify the trade-off’s
impact on achievable resolution for a large class of image for-
mation problems solved with penalized likelihood methods.

Although resolution bounds exist for dynamic medical to-
mography [2], this work addresses a more general class of
non-stationary linear inverse problems. When compared to
similar problems in remote sensing and astronomy, medical
imaging has, in general, the benefit of relatively high SNR
and densely sampled projection observations. Another gen-
eral difference is that astronomical image formation can re-
quire extremely long observing intervals when, for example,
the Earth’s rotation is utilized in radio interferometry or revo-
lution about the Sun in solar tomography [1], [3]. Stationarity
is an increasingly good assumption as the observation inter-
val shortens but a dynamic solution is often required as the
observation interval lengthens.
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The theoretical contribution of this paper consists of a
time-dependent generalization of Fessler’s local impulse re-
sponse [4]. Though Fessler’s latest work [5] also extends
the local impulse response to dynamic problems, this effort
considers the more general fully stochastic state-space signal
model which is amenable to a broad class of data assimila-
tion problems [1]. The local impulse response quantifies the
average effect a spatially localized perturbation has on the re-
constructed image [4]. Our generalization provides the means
to quantify the effect of a localized spatial-temporal perturba-
tion and the extent of the effect defines the average resolu-
tion limits, both spatially and temporally. Furthermore, our
methodology applies to all problems encountered in state es-
timation: filtering, prediction, and smoothing [6].

Because the analysis is based on the Kalman filter [6], the
theoretical contribution provides a practical tool to compute
the dynamic local impulse response and investigate resolu-
tion bounds. The spatial and temporal extent of the dynamic
local impulse response, often quantified by the full width at
half maximum [4], bounds the smallest discernible recon-
structed features at one particular spatial-temporal coordinate.
Probing these bounds reveals the reconstructed image regions
that are least prone to systematic artifacts and can ultimately
strengthen the inferred scientific conclusions.

The remainder of the paper is organized in the following
manner. Sec. 2 defines the linear static and dynamic signal
models. The static impulse response [4] is briefly summa-
rized in Sec. 3. Next, Sec. 4 derives the dynamic impulse
response. Sec. 5 details a dynamic tomography example and
demonstrates the use of the Kalman filter to compute the local
impulse response. Conclusion are given in Sec. 6.

2. SIGNAL MODELS

The linear dynamic signal model is defined by the state-space
equations:

xi+1 = F i xi + ui (1)
yi =Hi xi + vi. (2)

In the above, the N -dimensional vector xi is the unknown at
time index i, the time index has the range 1 ≤ i ≤ I , the M -
dimensional vector yi is the ith measurement, the matricesF i



and Hi are known, and the random vectors ui and vi model
uncertainty in the state-transition (1) and forward (2) mod-
els. Also, the covariances Qi , Cov

(
ui

)
, Ri , Cov

(
vi
)
,

and Π1 , Cov
(
x1

)
are known as is the initial state mean

µ1 , E[x1]. We emphasize that [5] considers a similar sig-
nal model, but with no uncertainty in the state transition, i.e.,
ui = 0.

The linear static signal model assumes x = xi and is
obtained when F i = I , where I is the identity matrix, and
ui = 0 in (1). The signal model reduces toy1

...
yI

 =

H1

...
HI

x+

v1...
vI

 (3)

which we will represent by the notation

y1:I =H1:I x+ v1:I , (4)

the measurement and initial state covariances by R1:I ,
Cov

(
v1:I

)
and Π , Cov

(
x
)
, and the initial state mean by

µ , E[x].

3. STATIC IMPULSE RESPONSE

The static local impulse response [4] is defined by

lj ,
∂

∂ [x]j
E[x̂|x] (5)

where [·]j denotes the jth component of its vector argument
and x̂ is the estimate of the unknown. For this work, we con-
sider the linear minimum mean square error (LMMSE) esti-
mator given by [6]

x̂ = µ+
(
Π−1 +HT

1:I R
−1
1:IH1:I

)−1
HT

1:I R
−1
1:I

·
(
y1:I −H1:I µ

)
.

(6)

The static local impulse under the linear static signal
model defined in Sec. 2 is summarized by the following
theorem.

Theorem 1. The local impulse response (5) for the jth pa-
rameter of the LMMSE estimator (6) is given by

lj =
(
Π−1 +HT

1:I R
−1
1:IH1:I

)−1
HT

1:I R
−1
1:IH1:I e

j (7)

where [
ej
]
n
,

{
1, j = n

0, otherwise.
(8)

Proof. See Section II in [4]. However, it is straightforward to
evaluate (5) for the LMMSE estimator (6).

4. DYNAMIC IMPULSE RESPONSE

We define the dynamic local impulse response as

lj, ki|i′ ,
∂

∂ [xk]j
E[x̂i|i′ |x1:i] (9)

where x̂i|i′ , x̂i|1:i′ denotes the estimate of the state xi

given the set of measurements {yk}i
′

k=1. The filtering (i′ = i)
case is addressed by the following theorem and the smoothing
(i′ > i) and prediction (i′ < i) cases by the subsequent corol-
lary. As in Sec. 3, we consider the LMMSE estimator. For
the linear dynamic signal model, filtered LMMSE estimates
are given by the Kalman filter and predicted and smoothed
estimates by affine transformations of its output [6].

The dynamic local impulse response for the filtered
LMMSE estimator is summarized by the following theorem.

Theorem 2. Consider the filtered LMMSE estimator under
the linear dynamic signal model defined in Sec. 2. The filtered
local impulse response for the kth time index and jth parame-
ter is denoted by lj, ki|i and may be computed by processing the
following simulated measurements through the Kalman filter
with µ1 = 0:

y1:i =H
B
1:i e

j
k (10)

where
HB

1:i , diag
(
H1, . . . , Hi

)
(11)

and diag(·) denotes the block diagonal matrix with its argu-
ments as the block elements. The unit vector ejk is defined
by [

ejk

]
(l−1)M+1: lM

,

{
ej , l = k

0, otherwise
(12)

and [·](l−1)M+1: lM selects the lth block of length M from its
vector argument.

Proof. First, the Kalman filter is an affine function of the
measurements [6], meaning it may be written in the form

x̂i|i = Ai y1:i + bi (13)

and, because the Kalman filter computes LMMSE estimates,
the above parameters are given by [6]

Ai = Cov
(
xi,y1:i

)
Cov

(
y1:i,y1:i

)−1
(14)

bi = E[xi]− Cov
(
xi,y1:i

)
Cov

(
y1:i,y1:i

)−1
E[y1:i]

(15)

where y1:i = HB
1:i x1:i + v1:i and [x1:i](l−1)N+1: lN = xl.

Next, it is straightforward to derive the expectation of the fil-
tered estimate conditioned on the state:

E[x̂i|i|x1:i] = AiH
B
1:i x1:i + bi. (16)



The dynamic local impulse response (9) is then given by

lj, ki|i = AiH
B
1:i e

j
k (17)

and note that (17) is equal to (13) if y1:i =H
B
1:i e

j
l and bi =

0. Finally, it is not difficult to show that

E[xi] = F i−1 F i−2 · · · F 1 µ1 (18)

and
E[y1:i] =H

B
1:iE[x1:i] (19)

which together imply bi = 0 if µ1 = 0.

The local impulse response for smoothed and predictive
LMMSE estimators are addressed by the following corollary.

Corollary 3. Consider the LMMSE predictor that produces
the estimate x̂i+1|i. The predicted local impulse response
lj, ki+1|i is given by

lj, ki+1|i = F i l
j, k
i|i . (20)

Furthermore, consider the LMMSE fixed-interval smoother
[6] that produces the estimates x̂i|1:I . The smoothed local
impulse response lj, ki|1:I can be computed by processing the

simulated measurements y1:I = HB
1:I e

j
k with the Kalman

smoother [6] with µ1 = 0.

Proof. First, the LMMSE prediction of the state xi+1 given
the measurements y1:i is x̂i+1|i = F i x̂i|i. Therefore, fol-
lowing the development in the proof to Theorem 2,

lj, ki+1|i = F iAiH
B
1:i e

j
k (21)

which can be computed by applying the Kalman filter time
update [6] to lj, ki|i .

Next, the Kalman smoother is an affine function of the
measurements and can be written in the form

x̂i|1:I = A′i y1:I + b
′
i (22)

where

A′i = Cov
(
xi,y1:I

)
Cov

(
y1:I ,y1:I

)−1
(23)

b′i = E[xi]− Cov
(
xi,y1:I

)
Cov

(
y1:I ,y1:I

)−1
E[y1:I ].

(24)

The remainder of the argument then closely mirrors the proof
to Theorem 2.

5. NUMERICAL EXAMPLE

In this numerical experiment, the unknown state is a 16× 16
and 48 time step spatial-temporal discretization of a diffusive
process, meaning

∂ xt(s)

∂ t
= k∇2

s xt(s). (25)
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Fig. 1. The unit vector ejk as viewed at time index 29. The
unit vector is equal to 0 at all other time indices.

Each 40 dB SNR (SNR , 10 log10 ‖s1:I‖22/‖v1:I‖22 where
si , Hi xi) measurement consists of M = 23 parallel and
regularly spaced line integrals of the state that uniformly
sweeps through 540◦ over the 48 time steps. To add a chal-
lenge that is often encountered in practice, we model the
dynamics as a random walk (F i = I) though the diffusive
physics governing the experiment are known and linear. We
focus on the random walk model because it is often used in
practice [1], [3] when the governing physics are complicated
and linearized approximations are not useful. The state noise
covariance Qi is modeled to have 9 bands, indicating each
element of ui is correlated with immediate neighbors only.
The initial state mean is µ1 = 0 and the initial state covari-
ance is Π1 = α

(
DTD

)
. The parameter α was manually

tuned and D =
[
DT

x D
T
y

]T
where Dx and Dy are discrete

approximations to the spatial derivative in the horizontal and
vertical directions.

The ground truth xi is shown in the first row of Fig. 2,
where each column is a spatial-temporal sample of a sim-
ulated diffusion that uses a Dirichlet boundary condition of
four hot spots in a cold background at time index i = 1.
The second and third rows of Fig. 2 show the filtered x̂i|i and
smoothed x̂i:1:I estimates. As expected and guaranteed in the
minimum mean square sense [6], the smoothed estimates are
superior to the filtered estimates. Quantitatively, the relative
error (e.g.,

∥∥x1:I − [x̂T
1|1 · · · x̂

T
I|I ]

T
∥∥
2
/
∥∥x1:I

∥∥
2
) in the fil-

tered case is 0.596 and 0.356 in the smoothed case.
To better understand the resolution implications, we now

investigate the local impulse response. We consider the 29th
time index and spatial location depicted in Fig. 1. The local
impulse responses lj, 29i|i and lj, 29i|1:I are shown in the fourth and
fifth rows of Fig. 2. Portions of an impulse response function
appearing in gray correspond to absolute values less than one
quarter of the impulse response maximum. The filtered local
impulse response lj, 29i|i is uniformly equal to 0 at time indices
less than i = 29. This is expected because the filtered esti-
mates are causal. Also, note that the smoothed local impulse
response function decays more quickly in time than in the
filtered case. We conclude and could even predict that the rel-
ative spatial compactness of the smoothed dynamic local im-
pulse response lj, 29i|1:I away from time index i = 29 translates
to enhanced reconstruction fidelity at the spatial-temporal co-
ordinate under study.
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Fig. 2. First row: the experimental ground truth xi. Second and third rows: the filtered (x̂i|i) and smoothed (x̂i|1:I ) estimates
of the ground truth given noisy projective measurements. Fourth and fifth rows: the filtered (lj,ki|i ) and smoothed (lj ki|1:I ) dynamic
impulse responses at time index k = 29. Note that the first three and the last two rows are each displayed on a common scale.

6. CONCLUSIONS

This paper has addressed the problem of assessing resolution
limits in linear dynamic image formation. The numerical ex-
periment demonstrates that smoothing can provide substantial
benefits in dynamic tomography. Furthermore, though the fo-
cus has been on image formation, the analysis and tools de-
veloped in this work apply to a broad class of penalized like-
lihood methods. Lastly, [4] focuses mainly on the nonlinear
case and the results of this work can similarly extend to the
analysis of nonlinear dynamic inverse problems.
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