TEMPERATURE EFFECTS ON ADHESIVE BOND STRENGTHS AND MODULUS FOR COMMONLY USED SPACECRAFT STRUCTURAL ADHESIVES

ERIC OAKES
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
5/26/2011
Agenda

• Purpose and Scope
 – Establish property guidelines to help select adhesives.

• Lapshear Testing (ASTM D1002)
 – Sample preparation
 – Test methods
 – Results (Explanation of statistical analysis/ reason for using B-basis allowables)

• Dynamic Mechanical Analysis (DMA)
 – Sample preparation
 – Test Methods
 – Results

• Future Work
 – Different Adherends
 – Tensile testing adhesive dog bones (ASTM D638)

• Questions?
The purpose of this effort was to study how changes in temperature affected:
- Average bond strength
- Loss and storage modulus as a function of temperature.

Seven commonly used adhesives were tested:
- Hysol EA9394, EA9309.3, EA9360, EA9361
- STYCAST 2850FT Black with Catalyst 9 and 24 LV
- Scotch-Weld EC 2216

Two Test types:
- ASTM D1002
- Dynamic Mechanical Analysis

Using these two methods, data was collected, providing details about the bondline properties at various temperatures:
- ASTM D1002 Data used for B-basis reference database and graphs over temp range
- DMA provided graph of Storage and Loss modulus over selected temp range
ASTM D1002-
Sample Fabrication and Surface Preparation

- Sample Fabrication for sets of five single lap shear joints
 - Adherends made from Aluminum 6061-T6 (same lot of material for all)
 - Cut using water jet method to minimize oils deposited on the surface
 - After machining, panels were then deburred and cleaned

- Surface Cleaning
 - Cleaning using JPL specification for bonding
 - Elevated temperature alkaline cleaning
 - Elevated temperature Sodium Dichromate bath
 - Primed surface using BR-127

- Adhesive mixed and accelerated cure per manufacturer’s datasheet

- Bonding
 - 5 mil stainless steel bond wire used to maintain uniform bondline
 - Alignment maintained using lapshear bonding tool
Deviations from ASTM D1002 were for adherend construction

- Thicker than specified
 - The panels were 3.2 mm (0.125”) thick
 - Minimizes issues related to adherend bending and twisting during the pull test
- Through hole through tops of adherend
 - 9.5mm holes were drilled into the ends of the lap shear specimens
 - Eliminated grips “freezing up” at low temperatures

Figure 1. Modified Test Panel
Testing Procedure

- Lap shear coupons pulled using an Instron testing machine with a 22,000 lb load cell

- Sample loaded into the machine testing grips and pin and clevis at low temperatures

- Pulled at rate of 2.03 mm/min (0.08 in/min)

- Load vs. displacement results were recorded with Labview

- Thermal couple attached to every specimen to ensure testing done at correct temperature
 - Allowed to equilibrate at temperature for a minimum of 5 minutes

- All equipment was calibrated at time of test

- 10 coupons tested at each temperature from -150 °C to 175 °C
• Data complied using Stat 17 for B-basis allowables

<table>
<thead>
<tr>
<th>Temperature</th>
<th>9394 (MPa)</th>
<th>2216 (MPa)</th>
<th>2850-9 (MPa)</th>
<th>2850-24LV (MPa)</th>
<th>9309.3 (MPa)</th>
<th>9360 (MPa)</th>
<th>9361 (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-150</td>
<td>15.2</td>
<td>15.8</td>
<td>7.8</td>
<td>15.7</td>
<td>15.2</td>
<td>18.3</td>
<td>24.9</td>
</tr>
<tr>
<td>-100</td>
<td>17.7</td>
<td>17.0</td>
<td>12.3</td>
<td>16.3</td>
<td>22.5</td>
<td>17.9</td>
<td>24.5</td>
</tr>
<tr>
<td>-70</td>
<td>15.4</td>
<td>14.5</td>
<td>12.5</td>
<td>24.2</td>
<td>39.1</td>
<td>20.8</td>
<td>25.9</td>
</tr>
<tr>
<td>-40</td>
<td>18.6</td>
<td>23.2</td>
<td>18.5</td>
<td>24.8</td>
<td>45.7</td>
<td>26.6</td>
<td>34.4</td>
</tr>
<tr>
<td>-10</td>
<td>21.0</td>
<td>29.3</td>
<td>16.0</td>
<td>22.7</td>
<td>44.0</td>
<td>31.7</td>
<td>35.7</td>
</tr>
<tr>
<td>25</td>
<td>27.2</td>
<td>25.3</td>
<td>15.0</td>
<td>23.3</td>
<td>37.6</td>
<td>35.3</td>
<td>27.4</td>
</tr>
<tr>
<td>50</td>
<td>26.4</td>
<td>11.7</td>
<td>17.5</td>
<td>9.1</td>
<td>26.6</td>
<td>29.1</td>
<td>17.5</td>
</tr>
<tr>
<td>75</td>
<td>18.8</td>
<td>6.1</td>
<td>16.2</td>
<td>4.3</td>
<td>19.0</td>
<td>23.8</td>
<td>8.0</td>
</tr>
<tr>
<td>100</td>
<td>15.9</td>
<td>3.8</td>
<td>11.4</td>
<td>3.2</td>
<td>5.0</td>
<td>16.6</td>
<td>4.8</td>
</tr>
<tr>
<td>125</td>
<td>12.9</td>
<td></td>
<td>8.5</td>
<td></td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>8.2</td>
<td></td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results - Table B-Basis Allowables (Cont)

- Data complied using Stat 17 for B-basis allowables in English units

<table>
<thead>
<tr>
<th>Temperature</th>
<th>9394 (psi)</th>
<th>2216 (psi)</th>
<th>2850-9 (psi)</th>
<th>2850-24LV (psi)</th>
<th>9309.3 (psi)</th>
<th>9360 (psi)</th>
<th>9361 (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-150</td>
<td>2199</td>
<td>2285</td>
<td>1131</td>
<td>2280</td>
<td>2201</td>
<td>2650</td>
<td>3607</td>
</tr>
<tr>
<td>-100</td>
<td>2570</td>
<td>2468</td>
<td>1787</td>
<td>2359</td>
<td>3261</td>
<td>2596</td>
<td>3554</td>
</tr>
<tr>
<td>-70</td>
<td>2227</td>
<td>2100</td>
<td>1815</td>
<td>3503</td>
<td>5670</td>
<td>3015</td>
<td>3760</td>
</tr>
<tr>
<td>-40</td>
<td>2700</td>
<td>3371</td>
<td>2676</td>
<td>3598</td>
<td>6627</td>
<td>3852</td>
<td>4988</td>
</tr>
<tr>
<td>-10</td>
<td>3042</td>
<td>4247</td>
<td>2318</td>
<td>3288</td>
<td>6388</td>
<td>4604</td>
<td>5180</td>
</tr>
<tr>
<td>25</td>
<td>3946</td>
<td>3671</td>
<td>2175</td>
<td>3386</td>
<td>5454</td>
<td>5117</td>
<td>3978</td>
</tr>
<tr>
<td>50</td>
<td>3829</td>
<td>1701</td>
<td>2539</td>
<td>1313</td>
<td>3862</td>
<td>4214</td>
<td>2531</td>
</tr>
<tr>
<td>75</td>
<td>2726</td>
<td>880</td>
<td>2348</td>
<td>625</td>
<td>2761</td>
<td>3458</td>
<td>1160</td>
</tr>
<tr>
<td>100</td>
<td>2309</td>
<td>552</td>
<td>1648</td>
<td>470</td>
<td>732</td>
<td>2410</td>
<td>703</td>
</tr>
<tr>
<td>125</td>
<td>1872</td>
<td>1238</td>
<td>397</td>
<td>742</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>1184</td>
<td>868</td>
<td>422</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>688</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results - Graph of B-Basis Allowables

- Data compiled using Stat 17 for B-basis allowables in English units

B-Basis Test Results

- Ultimate Strength (psi) vs. Temperature (°C)

- Data points for different materials and temperatures.
Results - Graph of B-Basis Allowables for Stycast 2850FT Black Catalyst 9 and 24LV

- Data complied using Stat 17 for B-basis allowables in English units

B-Basis Test Results for Stycast 2850FT Catalyst 9 and 24LV

Ultimate Strength (psi) vs. Temperature (°C)
Results - Graph of B-Basis Allowables for EA9309.3, EA9361, and EC 2216

- Data complied using Stat 17 for B-basis allowables in English units

B-Basis Test Results for EA9309.3, EA9361, and EC2216
Results- Graph of B-Basis Allowables for EA9360 and EA9394

- Data complied using Stat 17 for B-basis allowables in English units.

B-Basis Test Results for EA9360 and EA9394
Dynamic Mechanical Analysis – Sample Preparation and Testing

• Sample Preparation:
 – Samples mixed and cured per manufacturer’s datasheet
 – Cured as a flat panel (6mm thick) and cut into 25mm x 75mm x 6mm bars
 – Further cut down in Analytical Chemistry Lab using fine hacksaw
 ▪ Approx. 17.5mm x 13mm x 3 mm

• Testing
 – Performed on a TA Q800 DMA instrument
 – Configured in a single cantilever clamp mode
 – Temperature range from -130ºC to +150ºC; ramp rate 5ºC per minute
 ▪ Rate set to maintain thermal equilibrium in sample
 – Done at constant frequency (1 Hz) and constant amplitude (50 µm)
 – Storage and Loss modulus were graphed from results
Results - Example of DMA Graph (9309.3)

Sample: Ojeda 9309-3 purple color
Size: 17.5000 x 12.7000 x 3.0400 mm
Method: Temperature Ramp
Comment: Ojeda sample 9309-3, purple color, adhesive

File: C:...\OJEDA\9309-3 purple adhesive.001
Operator: WH
Run Date: 20-Jan-2011 08:56
Instrument: DMA Q800 V7.5 Build 127
DMA Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>1<sup>st</sup> Tg (ºC)</th>
<th>2<sup>nd</sup> Tg (ºC)</th>
<th>3<sup>rd</sup> Tg (ºC)</th>
<th>1<sup>st</sup> Loss Peak (ºC)</th>
<th>2<sup>nd</sup> Loss Peak (ºC)</th>
<th>3<sup>rd</sup> Loss peak (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9394</td>
<td>-33.6</td>
<td>106.1</td>
<td>NA*</td>
<td>-41.6</td>
<td>101.3</td>
<td>NA*</td>
</tr>
<tr>
<td>2216</td>
<td>-57.1</td>
<td>55.3</td>
<td>NA*</td>
<td>-60.2</td>
<td>39.1</td>
<td>NA*</td>
</tr>
<tr>
<td>2850 Cat 24LV</td>
<td>-41</td>
<td>74.0</td>
<td>NA*</td>
<td>-50.7</td>
<td>66.9</td>
<td>NA*</td>
</tr>
<tr>
<td>2850 Cat 9</td>
<td>-39.4</td>
<td>97.0</td>
<td>NA*</td>
<td>-46.8</td>
<td>87.6</td>
<td>NA*</td>
</tr>
<tr>
<td>9309-3</td>
<td>-55.6</td>
<td>-37.0</td>
<td>80.2</td>
<td>-58.6</td>
<td>-43.7</td>
<td>73.2</td>
</tr>
<tr>
<td>9360</td>
<td>-62.3</td>
<td>-27.3</td>
<td>101.9</td>
<td>-63.8</td>
<td>-34.0</td>
<td>89.7</td>
</tr>
<tr>
<td>9360</td>
<td>-56.2</td>
<td>58.0</td>
<td>NA*</td>
<td>-59.5</td>
<td>40.7</td>
<td>NA*</td>
</tr>
</tbody>
</table>

Table 1. Glass Transition and Loss Modulus Temperatures

- Several Tan Delta and Loss Modulus peaks for each sample is indicative of morphological inhomogeneities
 - Attributed to a polymer blend, polymer “alloy” or a polymer that has additives (such as chain extenders or cross-linking agents)

- In general, the modulus results correlated well with the variations in adhesive bond strength as a function of temperature
Future Work

• Perform lapshears (ASTM D1002) using different adherend materials bonded with EA9309.3 and EA9394
 – Titanium
 – Invar

• Determine the tensile modulus as a function of temperature using ASTM D638 - Test Method for Tensile Properties of Plastic
Questions?