
  

  

Abstract—The maritime environment poses a number of 
challenges for autonomous operation of surface boats. Among 
these challenges are the highly dynamic nature of the 
environment, the onboard sensing and reasoning requirements 
for obeying the navigational rules of the road, and the need for 
robust day/night hazard detection and avoidance. Development 
of full mission level autonomy entails addressing these 
challenges, coupled with inference of the tactical and strategic 
intent of possibly adversarial vehicles in the surrounding 
environment. This paper introduces PACIFIC (Process 
Algebra Capture of Intent From Information Content), an 
onboard system based on formal process algebras that is 
capable of extracting actions/activities from sensory inputs and 
reasoning within a mission context to ensure proper responses. 
PACIFIC is part of the Behavior Engine in CARACaS 
(Cognitive Architecture for Robotic Agent Command and 
Sensing), a system that is currently running on a number of 
U.S. Navy unmanned surface and underwater vehicles. Results 
from a series of experimental studies that demonstrate the 
effectiveness of the system are also presented. 

I. INTRODUCTION 
HE use of unmanned vehicles (example shown in Fig. 1) 
in maritime environments is increasing for a wide 

variety of military and commercial missions such as wide 
area scientific surveys, long duration monitoring, and deep 
underwater repairs. Survivability of the vehicles is an issue 
that needs to be explicitly addressed through robust hull 
designs, appropriate sensor suites, and a high level of 
onboard autonomy. The Jet Propulsion Laboratory (JPL) has 
developed a system called CARACaS (Cognitive 
Architecture for Robotic Agent Command and Sensing) [1, 
2, 3] running onboard a number of US Navy unmanned 
surface vehicles (USV’s) and underwater vehicles (UUV’s) 
over the last seven years. CARACaS integrates the key 
components of an onboard autonomy system including an 
onboard Dynamic Planner for on-the-fly mission changes, a 
Behavior Engine that is able to adapt to rapidly changing 
conditions and learn about new situations, and a Perception 
sub-system that combines local sensing for hazard detection 
/avoidance with long range sensing for situational 
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awareness. The core 
Behavior Engine is based 
on a Finite State Machine 
(FSM) framework that is 
running under the R4SA 
(Reconfigurable, Robust, 
Real-Time, Robotic 
Software Architecture), 
an embedded system 
derived from JPL flight 
technology that ensures a 
deterministic response to 
the dynamic maritime 
environment.  

In order to process the incoming sensory information in a 
manner that is aligned with the CARACaS World View, a 
formal process algebra based on the Cost-Calculus ($-
Calculus) of Eberbach [4] is used to map behaviors into a 
framework that is efficient for onboard reasoning and 
learning. A similar approach was used previously to develop 
the CCL (Common Control Language) [5, 6] that is running 
onboard a UUV at the Naval Undersea Warfare Center in 
Newport, Rhode Island. The reasoning/learning portion of 
the Behavior Engine for interpretation of the actions of other 
agents in the environment is called PACIFIC (Process 
Algebra Capture of Intent From Information Content). The 
process algebra is used to project the observed 
actions/activities of other agents onto the vehicle’s internal 
behavior base for a “like-me” analysis [7]. For example, if 
two boats are obeying the international maritime Rules-of-
the-Road (also called COLREGS [8]), during normal 
operations the behavior of the other boat is to a certain 
extent predictable. COLREGS violations are traceable to a 
number of possible factors, including limited relative 
visibility, driver impairment, adverse weather/sea 
conditions, and ignorance of the rules; or in the event of an 
adversarial environment, possible hostile actions. The 
current implementation of the COLREGS behaviors under 
CARACaS is described in a paper in these proceedings [9]. 

An example of the behavior mapping under CARACaS for 
COLREGS of a Head-On encounter between two boats is 
shown in Fig. 2. The competing behaviors for the encounter 
are Waypoint Navigation and COLREGS. An arbitration 
mechanism is used to decide the appropriate action to take 
given the sensory inputs. Among the arbitration mechanisms 
commonly used are subsumption [10], weighted voting [11], 
and multiple objective decision making [12], all of which are 
supported under CARACaS through the $-Calculus. 
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Fig. 1. US Navy Unmanned Sea 
Surface Vehicle (USSV) 
technology prototype used for the 
on-water testing of autonomy 
algorithms (Photo courtesy of 
NAVSEA, Carderock).  



  

PACIFIC contains the reasoning mechanism within the 
process algebra to analyze the observed behavior of other 
agents within the current mission context, determine if there 
is a match to expected behaviors, and learn about new 
behaviors if there is not a match. 

The next section briefly reviews the $-Calculus and the 
onboard learning mechanism. The following section 
describes some experimental studies that were run to test the 
framework reasoning and learning capabilities. The final 
section summarizes the results and describes the current 
research directions. 

II. PROCESS ALGEBRA 

A. Background 
State formalisms and process algebras are at the core of 

many proposed approaches to representing, learning and 
explaining visual behaviors. These approaches have 
advantages in expressive power, especially with respect to 
representing interaction, intuitive notation and a strong 
mathematical foundation, and have been used successfully in 
representing and analyzing spatiotemporal patterns of 
behavior, primarily for surveillance of vehicles and humans. 
The Cost-Calculus ($-Calculus) [4], based on Milner’s π-
calculus of mobile concurrent processes, enriched with the 
concept of cost calculation and composition operators, is one 
example of a process algebra. 

A Cost Calculus ($-Calculus) [4] is a model for resource 
bounded computation based on process algebras that: 

• provides a means for generating incremental solutions 
for computationally hard, real-life problems, 

• provides a uniform representation for the use of 
uncertain/unobservable information during the cost-
optimization process (kΩ-optimization), and 

• encapsulates most currently used search algorithms. 

Behaviors are written as Cost-expressions ($-expressions) 
built using the algebraic operators of send/receive, cost 
assignment, defined simple/process calls such as choice, and 
sequential/parallel composition. An example of the mapping 
of the behavior network from Fig. 3 into the $-Calculus is 
given by: 
  NAVIGATE = (WPT_Nav | | Satisfy COLREGS),    (1) 
where the parallel composition operator ( | | ) indicates the 
two behaviors are running with all allowable interleavings. 

The process algebra in the $-Calculus is formally 
equivalent to a Labeled Transition System (LTS), which is 
convenient for the mapping of actions within the FSM of 
CARACaS into a framework that explicitly captures the link 
between vehicle behaviors and actions. A LTS is defined as 
a triple (S, A, {  | a ∈ A}), where S is a set of states, A 
is a set of actions (labels), and each  is a subset of S x 
S called an action relation over S. A transition system with 
an initial state is called a process. A process algebra can be 
defined as a quadruple (S, A, {  | a ∈ A}, P), where S, 
A, , are defined as in the LTS, and P ∈ S is the initial 
state. Each transition arc is also labeled with the cost ($) 
associated with the state-action pair in the transition. This 
cost is used for the onboard learning to weight the transition 
probabilities. Multiple possible transitions out of a state 
represent a nondeterministic choice, which is included in the 
$-Calculus using choice operators based on cost (minimal 
probability), adversary (maximal probability), or general 
(random). 

The mapping of the behavior network shown in Fig. 2 into 
an LTS is given in Fig. 3, with transitions labeled as 
Behavior.{action}, where Behavior is either WPT or 
COLREGS, and the actions are Port, Stbd, Straight, or 
Continue indicating possible turn directions or execution of 
the Behavior. Each action-transition pair has a probabilistic 
cost associated with it (not shown in Fig. 3 for clarity), that 
is updated using standard Bayesian update rules. 

The fast response required in the dynamic maritime 
environment is explicitly addressed through the kΩ 
optimization algorithm built into the $-Calculus. The kΩ 
optimization algorithm includes bounds on depth of search 
and tree branching during the inference matching process, 
and on the number of iterations for convergence to allow 
dynamic adaptive tailoring of processing under the $-
Calculus. PACIFIC uses probability as its cost function in 
order to build a ranked set of hypotheses for prediction and 

Fig. 2. Illustration of the links between the sensory inputs and action 
selection mechanism in CARACaS. This example is the behavior 
network for the satisfaction of COLREGS for the head-on encounter 
of two boats. The two possibly competing behaviors are Waypoint 
Nav. and COLREGS, which are arbitrated to determine which action 
to take. A single composite map for hazard detection (shown in 
lower left hand corner) is made from the four stereo cameras. The 
approaching boat for the head-on COLREGS is the blue blob circled 
in red at the bottom left of the composite map. 

Fig. 3. LTS derived from the $-Calculus mapping of the Head-On 
Approach diagram shown in Fig. 2, including Waypoint Navigation 
(WPT) and COLREGS, with the actions associated with each type of 
behavior (Port, Stbd, Straight, Continue) prefixed by the behavior. 
Diagram generated using the LTSA 
(http://www.doc.ic.ac.uk/~jnm/book/ltsa/LTSA_applet.html). 



  

interpolation. A previous study using PACIFIC extracted 
and identified the observed actions/activities of suited 
astronauts working in a simulated lunar environment with a 
success rate of over 80% [13]. TLTS (Timed Labeled 
Transition Systems) [14], which explicitly include temporal 
operators to capture the dynamics of state transitions 
between actions, are used as the underlying representation 
for the $-Calculus. 

B. Onboard Learning 
To date, there has been very little research into learning 

for behavior-based systems that are typically characterized 
by multiple, possibly conflicting goals [15]. The dominant 
learning strategy for single goal achievement such as robotic 
navigation has been reinforcement learning (RL), an 
unsupervised method that seeks to maximize a reward signal 
based on the utility of pairings of input and output states and 
their subsequent actions [16, 17, 18]. One of the most 
popular RL algorithms is Q-learning [19] and its variations 
such as Q-PSP [20], and hierarchical Q-learning [21]. The 
Q-learning rule is based on a utility function Q that has the 
update rule for new information: 

€ 

Q(a,i) = R(i) + Mij
a

j
∑ maxa 'Q(a', j),                  (2) 

where Q is the expected utility in state i performing action a, 
R is the reward for being in state i, and 

€ 

Mij
a  is the 

probability to reach state j from state i by performing action 
a. This expression is rewritten in the operators of the $-
Calculus as: 
 
 
    (3) 
 
 
 

The cost operator used in PACIFIC is Bayesian 
probability, and the RL algorithm is run using the kΩ 
optimization algorithm (bounded at a two step look-ahead 
with a branching factor of two) on the state transitions that 
dynamically occur as a sequence unfolds. Since the 
information needed to characterize an action-transition pair 
may not be available at each time step due to uncertainty in 
the sensory inputs, the $-Calculus provides an ε silent 
process that is used for the unknown states within the look-
ahead horizon. The ε silent process does not participate in 
the RL analysis and serves as a placeholder until more 
information is available. 

C. Related Work 
There are a number of methods that have been proposed 

for action/activity recognition in sequences of sensor inputs. 
Among these are context free stochastic grammars [22, 23] 
extended grammars [24], and dynamic Bayesian networks 
[25]. These techniques suffer from exponential 
computational complexity as the number of states increases 
for complex environments, as opposed to the polynomial 
computational complexity of PACIFIC. In addition, the 
majority of the methods rely on fixed surveillance cameras, 
which is not the case for a moving USV. Good reviews of 

the wide range of methods can be found in Aggarwal and 
Ryoo [26], and in Turaga, et al. [27]. 

There have been numerous studies into the common 
ground between cognitive processing and formal process 
algebras [28,29]. The Event Calculus uses first order 
predicate logic to characterize actions with indirect effects, 
actions with non-deterministic effects, compound actions, 
concurrent actions, and continuous change. Reasoning is 
done based on changes in the values of features (fluents) and 
the temporal occurrence of events through predicates (such 
as Happens, Holds, etc.) in the environment. The Event 
Calculus uses a linear time structure, as opposed to the 
branching time structure in the Situation Calculus [30] and 
variants such as the Unifying Action Calculus [31] that 
explicitly handle non-determinism through the Poss 
predicate. These systems have typically been used to analyze 
toy problems such as the Yale Shooter and BlocksWorld, 
and thus haven’t been used extensively in real-world 
environments. 

Early work using process algebras to define robot 
schemas for behavior-based control of robotic platforms was 
done by Lyons and Arbib [32], and further extended by 
Benjamin, Lyons, and Lonsdale [33]. The $-Calculus was 
previously used in the development of the CCL (Common 
Control Language) for control of UUVs [5, 6]. This work 
used the $-Calculus infrastructure as the backend to an 
interpreter in order to generate the sequence of behaviors 
that best match the mission needs. This sequence was then 
uploaded to the vehicle for execution. 

Continuous valued versions of the Q-learning algorithm 
have been developed to address the large state space 
problem [34, 35]. These works used a continuous Q-value 
derived from neural networks or other function 
approximation methods. The state space concerns were also 
addressed for deterministic environments using a forgetting 
mechanism in a penalty-based hierarchical Q-learning 
algorithm, which reduces the amount of state information 
that an agent must maintain by using a low level agent to 
maintain local state information and a high level agent to 
maintain global state [36]. Most of the RL studies to date 
have been confined to simulations and interior navigation in 
2-D environments. 

Most recently, learning of sequential behaviors for goal 
satisfaction through a blend of static and dynamic behavioral 
motivation modules has been demonstrated in simulation 
and on a commercially available AmigoBot in a lab setting 
[37]. This analysis used state prediction and the use of short-
term memory (STM) and long-term memory (LTM) to store 
successful behavioral sequences following an action to learn 
the sequential behaviors. However, in the case of 
autonomous boat operations, the relationship between an 
action and a subsequent state is difficult to derive since it is 
closer to a non-deterministic process due to interactions with 
the water. Memory encoding is an effective technique for 
limiting the time needed for on-line learning, and is used in 
the PACIFIC RL algorithm. An onboard system for RL 
learning of navigation for planetary surface rovers traveling 
in rough terrain was introduced and demonstrated in the field 
by Huntsberger, Aghazarian, and Tunstel [38]. 

$(a, i) = $(a, i) + $(�j(�a�(◦a�j))),
$ - cost operator
� - general choice operator
� - cost choice operator
◦ - sequential composition operator



  

III. EXPERIMENTAL STUDY 
In order to test the 

ability of PACIFIC to 
detect new activities 
and to learn about 
them, a number of data 
acquisition runs were 
done in a boat basin at 
Ft. Monroe in Virginia 
(area shown in Fig. 4). 
The sensor suite 
mounted on the USV 
included a set of six 
cameras that give a 
long range, continuous 
360-degree view of the 
environment (top boxed area in Fig. 5), and a high resolution 
stereo vision system (lower boxed area in Fig. 5) that gives a 
short range view of the area in front of the USV for hazard 
detection and avoidance 
planning. Algorithmic 
and performance details 
of these systems can be 
found in [39, 40]. 
Examples of the output 
from the sensors are 
shown in Fig. 6, with the 
six cameras of the 360-
degree sensor shown on 
the top, and the four 
cameras of the stereo 
sensor shown on the bottom. 

A series of five sequences were collected, some of which 
had deliberate violations of COLREGS. Due to space 
limitations, only two of the analysis results will be presented 
in this paper. The reward function for the RL algorithm was 
defined in terms of the two measured variables: relative 
bearing (rel_bear) and lateral separation (lat_sep). Rel_bear 
is defined as the bearing in degrees to a sensed boat with 
respect to the forward centerline of the USV, and lat_sep is 
defined as the perpendicular distance in meters between the 
sensed boat and the projected forward centerline of the USV. 
In order to obey 
COLREGS for a 
head-on encounter 
between two boats, 
both boats should 
stay to port (rel_bear 
< 0 degrees) of each 
other, and maintain a 
safe separation 
(lat_sep = ~15 
meters depending on 
speed) to avoid 
collision. 

The reward 

function for the RL algorithm is defined in terms of a 
weighted sum of changes to the rel_bear and lat_sep as: 

   
(4) 
 

where speed (t) is the speed of the USV at time t, and α and 
β are weights used to prioritize the relative importance of the 
two terms. For the purposes of this study, α is fixed at 0.25 
and β is fixed at 0.75. The second term includes the speed of 
the USV in order to indicate that higher speed encounters 
need more lateral separation in order to ensure safe 
operations. All sequences were analyzed in an off-line mode. 

The first sequence (51 frames) satisfies COLREGS for a 
Head-On encounter and the second sequence (116 frames) 
violates COLREGS for a similar encounter. A 7-meter RHIB 
(Rigid Hull Inflatable Boat) approached the USV from the 
north end of the boat basin and stayed to the port side of the 
USV with an acceptable lateral offset during the first 
sequence, and initially stayed to the port side but then cut in 
front of the USV in the second sequence. The RHIB was 
detected and tracked in both sequences with the 360-degree 
sensors using the techniques described in [40]. A sample 
frame from the forward facing camera in the six-camera 
array and a summary sequence are shown in the top and 
bottom of Fig. 7 for the first sequence, and Fig. 8 for the 
second sequence.  

For the purposes of this study, only the relative bearing 
directly extracted from the tracking data was used for the RL 
update of the utility function Q. A plot of the reward 

functions versus frame number for the two sequences is 
shown in Fig. 9. Of particular note is the distinct deviation 
from a uniform award in both cases – toward a higher 
reward for the first sequence where COLREGS was obeyed, 
and a sharp downward trend followed by negative reward 
(penalty) in the second sequence where COLREGS was 
violated. 

Fig. 5. Sensor suite used in the 
experimental studies. Inside the 
top boxed area is the 360-degree 
sensor head, and inside the lower 
boxed area is the high resolution 
stereo bar. The suite is mounted 
on an arch that is positioned 
midship. 

Fig. 4. Boat basin study area at Ft. 
Monroe, VA is circled. The boat 
basin is 1500 meters long, so studies 
with a wide range of distances and 
situations are easier to stage.  

Fig. 6. Examples of raw outputs from 
the six cameras of the 360-degree 
sensor head (top) and the four cameras 
of the dual stereo system (bottom).  

Fig. 7. Sample frame from the forward facing camera in the 360-
degree sensor head (top), and a summary frame of the entire 
sequence sampled every fifth frame (bottom) for the first sequence. 
The center of the frame is aligned with the centerline of the USV. 

Fig. 8. Sample frame from the forward facing camera in the 360-
degree sensor head (top), and a summary frame of the entire 
sequence sampled every fifth frame (bottom) for the second 
sequence. The center of the frame is aligned with the centerline of 
the USV. 

€ 

R( t) = α[rel_ bear(t −1) − rel_ bear(t)]+ β [lat_ sep( t) − speed(t)],



  

The relatively simple four-state LTS shown in Fig. 2 for 
nominal waypoint navigation and COLREGS is expanded to 
eight states by the RL algorithm with the new state 
transitions added for the COLREGS violation. A totally 
nominal COLREGS sequence will transition from state-0 to 
state-3 and cycle in the baseline LTS shown in Fig. 3. 
Currently the RL algorithm adds new actions/activities using 
the $-Calculus parallel composition operator. The new 
states/transitions learned by the RL algorithm are unlabeled, 
but the system runs an internal search using the kΩ 
optimization algorithm to decide what actions should be 
associated for safe transitions. 

The new LTS is shown in Fig. 10, where the response of 
“turn-to-port” for this particular violation (cutting across the 
bow) was the response incrementally learned by running the 
RL algorithm and evaluating if the USV path intersected that 
of the offending boat. The transitions that were visited 
(circled) in this study were a cycle from state-0 to state-6 
and back for the nominal COLREGS (all frames in the first 
sequence, and up to frame 85 in the second sequence), and a 
cycle from state-0 to state-7 and back for the violation 
(frames 86 to 116 in the second sequence). The remainder of 
the COLREGS violation paths in the LTS were not visited or 
modified by the RL algorithm due to the reward values 
being too low. 

IV. SUMMARY & CURRENT DIRECTIONS 
Action recognition in the maritime domain was 

demonstrated within the PACIFIC framework, and a 
previously unseen action/activity was dynamically learned 
using a reinforcement learning algorithm running within the 
same process algebra framework.  Analysis of the other 
three data sequences that were collected using the new LTS 
in Fig 10 converged to the same conclusion with a match to 
the expected transitions. These results indicate that a process 
algebra framework is an efficient representation to use for 
formal reasoning and learning within the CARACaS 
behavior-based intelligent autonomy system running on a 
USV. Live runs with the USV on the water will further 
validate the utility of PACIFIC for dynamically learning 
about interactions with other agents within its environment. 

Current directions include the analysis of about forty 
terabytes of data logged from the USV running through 
various mission scenarios and under a wide variety of sea 
states/weather environments over the last three years to 
further tune PACIFIC. A stereo dataset (gives both lateral 
separation and relative bearing information) that was 
analyzed but not reported on in this paper indicated that the 
dominant variable for learning is relative bearing. 
Verification of this finding would allow further optimization 
of the algorithms. The large amount of states that are 
generated in the LTS as each new type of action is added can 
be somewhat mitigated by pruning states/transitions that are 
relatively rare, and relearning them on-the-fly. 

The addition of explanation capabilities to PACIFIC 
would enable the USV to describe the new actions/activities 
that it learned about in order for a human to label the new 
information (and possibly add tactical/strategic information 
tags). A dynamic decision tree decomposition [41] of the 
observed behaviors can be used to generate a set of rules for 
explanation using information gain and pruning to limit the 
size of the tree. 
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Fig. 10. LTS for the navigation and COLREGS behaviors after application of the RL algorithm to the COLREGS violation in the second 
sequence (sample image seen in Fig. 8). The system started with the LTS shown in Fig. 3, and new states were learned by the RL algorithm 
when the reward function indicated that transitions in the baseline LTS no longer matched the information retrieved from the sensors (around 
frame 85 in Fig. 8). The new LTS was generated using the parallel composition operator from the $-Calculus. Only the transitions (circled) 
visited based on the reward function values were updated as to the most probable action leading to a safe transition (in this case turn to port to 
avoid the boat cutting across the bow). Diagram generated using the LTSA (http://www.doc.ic.ac.uk/~jnm/book/ltsa/LTSA_applet.html). 


