

Using Ensemble Decisions and Active Selection to Improve Low-Cost Labeling for Multi-View Data

Umaa Rebbapragada, Kiri Wagstaff Jet Propulsion Laboratory California Institute of Technology

July 2, 2011
ICML 2011 Workshop on Combining Learning Strategies for Reducing Label Cost
Bellevue, WA

Classification of Sensor Network Data

- Node-level classification (in situ)
- Each node collects unique "view"
- Limited availability of labeled data
- Continuous stream of unlabeled data
- Nodes may communicate

Combining Learning Strategies

Example Selection	Labeling	Learning Strategy
High-confidence	Low-cost (self)	Bootstrapping Co-training
Low-confidence	High-cost (oracle)	Active learning
Low-confidence	Low-cost (ensemble)	Ś

Co-training

- Multi-view
- Semi-supervised
- Self-labels

Co-training¹

- Each learner classifies its unlabeled pool
- Each learner selects its most confident predictions
- All selected examples are moved to L₁ and L₂

[1] Blum and Mitchell, Combining Labeled and Unlabeled Data with Co-training, COLT,1998

Very Long Baseline Array (VLBA) Data

- Geographically dispersed antennas
- Time series observations of pulsar PSR B0329+54
- 21 observations per example
- Classify pulse/non-pulse (680 pos, 680 neg)
- Created 4-, 6- and 9-view data sets. Results shown on 4-view data set

Co-training Produces Unreliable Labels

- Self-labeling introduces label noise
- Sensitive to base learner
- Noted by Pierce
 & Cardie, 2001

Co-training Produces Unreliable Labels

- Self-labeling introduces label noise
- Sensitive to base learner
- Noted by Pierce
 & Cardie, 2001

Talk Outline

Low-cost ways to improve label reliability?

 Can we combine low-cost labeling with lowconfidence example selection?

Multi-view Ensemble Labeling

- Learner classifies U₁, and selects an example
- Learner queries the other learners for a label
- Learner receives responses, and unifies them
- Example is added to L₁, L₂, L₃ and L₄

Ensemble Labeling

- Strategies for unifying neighbor predictions
- Abstain if cannot unify prediction with high confidence
- Majority Vote
 - Choose prediction with most votes
 - Abstain if at least half the ensemble did not make this prediction
- Consensus Vote
 - Choose unanimous prediction, otherwise abstain

Ensemble Labeling

Label Reliability

Test Set Accuracy

Low Confidence (LC) Example Selection with Oracle Labeling

SVM

Pairing Low-Confidence Example Selection with Low-Cost Labeling

Logistic Regression – p-values fail significance tests!

Collaborative Learning

- Each node of sensor network contains a classifier
- Classifier initialized with small amount of labeled data
- Classifier labels incoming data
- Collaborative learning learners to collaborate via queries to its nearest neighbors for examples and labels

Future Work

- Experimental results on 4-, 6-, 9-view VLBA data, and two 4-view data sets created from UCI repository
- Improve abstention policies => improve label reliability
- Goal: Confirm low-cost labeling and lowconfidence example selection are compatible