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Classification of Sensor Network Data 

• Node-level classification (in situ) 
 

• Each node collects unique “view” 
 

• Limited availability of labeled data 
 

• Continuous stream of unlabeled data 
 

• Nodes may communicate 
 



Combining Learning Strategies 

 

 Example Selection Labeling Learning Strategy 

High-confidence Low-cost (self) Bootstrapping 
Co-training 

Low-confidence High-cost (oracle) Active learning 

Low-confidence Low-cost (ensemble) ? 



Co-training 

• Multi-view 
• Semi-supervised 
• Self-labels 



Co-training1 

L1 

U1 

L2 

U2 

• Each learner classifies its unlabeled pool 

• Each learner selects its most confident predictions 
• All selected examples are moved to L1 and L2 

U1 

L1 

U2 

L2 

[1] Blum and Mitchell, Combining Labeled and Unlabeled Data with Co-training, COLT,1998 
 



Very Long Baseline Array (VLBA) Data 

• Geographically dispersed antennas 
• Time series observations of pulsar PSR B0329+54 
• 21 observations per example 
• Classify pulse/non-pulse (680 pos, 680 neg) 
• Created 4-, 6- and 9-view data sets.  Results shown 

on 4-view data set 
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Co-training Produces Unreliable Labels 

• Self-labeling 
introduces label 
noise 

• Sensitive to base 
learner 

• Noted by Pierce 
& Cardie, 2001 
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Talk Outline 

• Low-cost ways to improve label reliability? 
 

• Can we combine low-cost labeling with low-
confidence example selection? 
 
 
 
 
 



Multi-view Ensemble Labeling 

L1 

U1 

• Learner classifies U1, and selects an example 
• Learner queries the other learners for a label 
• Learner receives responses, and unifies them 

U4 
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• Example is added to L1, L2, L3 and L4 
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Ensemble Labeling 
• Strategies for unifying neighbor predictions 

 
• Abstain if cannot unify prediction with high confidence 

 
• Majority Vote 

– Choose prediction with most votes 
– Abstain if at least half the ensemble did not make this 

prediction 
 

• Consensus Vote 
– Choose unanimous prediction, otherwise abstain 



Ensemble Labeling 

Label Reliability Test Set Accuracy 

Logistic Regression 



Low Confidence (LC) Example 
Selection with Oracle Labeling 

Logistic Regression SVM 



Pairing Low-Confidence Example 
Selection with Low-Cost Labeling 

Label Reliability Accuracy 

Logistic Regression – p-values fail significance tests! 



Collaborative Learning 
• Each node of sensor network contains a classifier 
• Classifier initialized with small amount of labeled data 
• Classifier labels incoming data 
• Collaborative learning learners to collaborate via queries to its nearest 

neighbors for examples and labels 



Future Work 

• Experimental results on 4-, 6-, 9-view VLBA 
data, and two 4-view data sets created from 
UCI repository 

• Improve abstention policies => improve label 
reliability 

• Goal: Confirm low-cost labeling and low-
confidence example selection are compatible 
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