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Characterizing Observed Limit Cycles in the Cassini Main 
Engine Guidance Control System  

Farheen Rizvi1 and Raquel M. Weitl2 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena,CA, 91109 

The Cassini spacecraft dynamics-related telemetry during long Main Engine (ME) burns 
has indicated the presence of stable limit cycles between 0.03-0.04 Hz frequencies. These 
stable limit cycles cause the spacecraft to possess non-zero oscillating rates for extended 
periods of time. This indicates that the linear ME guidance control system does not model 
the complete dynamics of the spacecraft. In this study, we propose that the observed limit 
cycles in the spacecraft dynamics telemetry appear from a stable interaction between the 
unmodeled nonlinear elements in the ME guidance control system. Many nonlinearities in 
the control system emerge from translating the linear engine gimbal actuator (EGA) motion 
into a spacecraft rotation. One such nonlinearity comes from the gear backlash in the EGA 
system, which is the focus of this paper. The limit cycle characteristics and behavior can be 
predicted by modeling this gear backlash nonlinear element via a describing function and 
studying the interaction of this describing function with the overall dynamics of the 
spacecraft. The linear ME guidance controller and gear backlash nonlinearity are modeled 
analytically. The frequency, magnitude, and nature of the limit cycle are obtained from the 
frequency response of the ME guidance controller and nonlinear element. In addition, the 
ME guidance controller along with the nonlinearity is simulated. The simulation response 
contains a limit cycle with similar characterstics as predicted analytically: 0.03-0.04 Hz 
frequency and stable, sustained oscillations. The analytical and simulated limit cycle 
responses are compared to the flight telemetry for long burns such as the Saturn Orbit 
Insertion and Main Engine Orbit Trim Maneuvers. The analytical and simulated limit cycle 
characteristics compare well with the actual observed limit cycles in the flight telemetry. 
Both have frequencies between 0.03-0.04 Hz and stable oscillations. This work shows that the 
stable limit cycles occur due to the interaction between the unmodeled nonlinear elements 
and linear ME guidance controller. 

Nomenclature 
A   = nonlinear input amplitude  
An1, An2, Ad1, Ad2 =  bi-propellant slosh coefficients 
Bn1, Bn2, Bd1, Bd2 =  bi-propellant slosh coefficients 
Cn1, Cn2, Cd1, Cd2 =  bi-propellant slosh coefficients 
DSM   = deep space maneuver 
EGA   = engine gimbal actuator 
FFT   = fast fourier transform 
ESA   = European Space Agency 
G   = combined ME guidance controller transfer function 
Hz   = hertz 
h   = freeplay coefficient 
Ixx   = spacecraft X-axis moment of inertia 
Ixx-m   =  spacecraft X-axis moment of inertia parameter (it is a function of the X-axis Ixx) 
JPL   = Jet Propulsion Laboratory 
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M   =  nonlinear output amplitude 
ME   = main engine 
mrad   = milliradian 
N   = describing function  
NASA   = National Aeronautics and Space Administration 
OTM   = orbit trim maneuver 
R   = commanded and combined dynamics-related telemetry (attitude and rate) 
S/C   = spacecraft 
SOI   = Saturn orbit insertion 
TTVC   = thrust vector control transfer function 
TEGA   = engine gimbal actuator transfer function 
Tmag   = magnetometer boom dynamics transfer function 
Tprop   = bi-propellant slosh dynamics transfer function 
Tsc   = rigid body spacecraft dynamics transfer function 
TCM   = trajectory correction maneuver 
TVC   =  thrust vector control 
TWD   = tail wag dog (force component) 
ΔE   = energy change 
ΔV   = spacecraft velocity change 
γ   =   engine gimbal angle (it is also the input to the nonlinear element) 

~    = estimated and combined dynamics-related telemetry (attitude and rate) 
    = estimated spacecraft attitude 
θcommanded   = commanded spacecraft attitude 
θcontrol system estimate = ME guidance controller spacecraft attitude estimate (same as )  
ω   = estimated spacecraft body rate about X-axis 
ωcommanded   = commanded spacecraft X-axis body rate  
ωcontrol system estimate = ME guidance controller spacecraft X-axis body rate estimate (same as ω) 

I. Introduction 
HE Cassini-Huygens mission is a joint  NASA/ESA effort whose primary purpose is to explore Saturn, its rings, 
and moons. The mission launched from Earth in October 1997 and entered orbit around Saturn in July 2004 by 

performing two gravity assist-flybys of Venus (1998 and 1999), a flyby of Earth (1999), and one of Jupiter (2000). 
Cassini also successfully deployed the Huygens probe onto the surface of Titan in 2005.  

In order to reach and enter the orbit around Saturn, two long burns were performed with the rocket engine on-
board the spacecraft. The Deep Space Maneuver (DSM) lasted 1.46 hours and propelled the spacecraft onto the 
correct trajectory to reach Saturn. When Cassini reached Saturn, the Saturn Orbit Insertion (SOI) burn was 
performed for 1.61 hours so the spacecraft could achieve the required orbit around Saturn. SOI, along with its check 
out burn - TCM-19b - , are unique when compared to all other Cassini burns. These two burns had a target ΔE 
(Energy) instead of a target ΔV, which all other burns aim to achieve. In other words, the SOI burn attitude was 
rotated slowly, or “steered” with a rate of about 0.14 mrad/s. This rate tended to keep the thrust vector opposite the 
Saturn-relative velocity vector during the burn. Throughout its 1.61 hour SOI burn, the spacecraft attitude was 
rotated 46.37º. The spacecraft dynamics-related telemetry from the DSM and SOI indicated the presence of stable 
limit cycles between 0.03-0.04 Hz. Figure 1 shows the time history of the spacecraft X-axis rate, attitude control 
error, and fast fourier transform (FFT) on the dynamics-related telemetry near the end of the SOI burn.  
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 In Fig. 1, the X-axis rate and attitude control error constitute dynamics-related telemetry. The FFT incidates the 
presence of a stable limit cycle of 0.035 Hz in the telemetry. In the lifetime of the spacecraft, aside from DSM and 
SOI, the long burns currently performed are the Main Engine (ME) Orbit Trim Maneuvers (OTMs). These are 
executed so that the spacecraft remains near a trajectory that maximizes interesting science and minimizes propellant 
usage. Figure 2 depicts the dynamics-related telemetry and its FFT for one of these ME OTMs.  

   
 From Fig. 2, a stable limit cycle of 0.033 Hz is observed in the FFT of the telemetry.  During and after the ME 
OTMs, the presence of these limit cycles within the dynamics of the system causes the spacecraft to possess non-
zero oscillating rates throughout much of each ME burn. If the dynamics and interaction within the spacecraft are 
captured accurately, the spacecraft body rates should ideally follow the commanded attitude and stay there 
throughout the ME burn, enabling the error to decay to zero. Instead, a stable limit cycle is observed indicating that 
the current ME guidance control system does not model the complete dynamics of the spacecraft system. In order to 
capture the remaining dynamics, the behavior of these stable limit cycles should be characterized first. We propose 
that the observed limit cycles in the spacecraft dynamics telemetry appear from a stable interaction between the 
unmodeled nonlinear elements  and the linear ME guidance controller. One such nonlinearity emerges from the gear 
backlash in the engine gimbal actuator (EGA) system, where the EGA motion is translated into a spacecraft rotation. 
The limit cycle characteristics and behavior can be predicted by modeling the gear backlash nonlinear element via a 
describing function and studying the interaction of this describing function with the overall dynamics of the 
spacecraft. 
 

II. ME Guidance Controller 
The ME guidance controller is used to maintain the required spacecraft attitude during ME burns. The ME 

system is illustrated in Fig. 3. The spacecraft attitude about each spacecraft axis X, Y, and Z is stabilized by a 

 
Figure 1. Spacecraft Dynamics-Related Telemetry Time History  

and its Fast Fourier Transform Near the End of SOI Burn 
 

 
Figure 2. Spacecraft Dynamics-Related Telemetry Time History  

and its Fast Fourier Transform for ME OTM 2 
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Figure 3. Main Engine Assembly 

different controller. In this paper, we are only concerned with the X-axis 
control system. X-axis system dynamics contains the spacecraft rigid 
and flexible body dynamics. The flexible body dynamics model the 
effects from the magnetometer boom and propellant slosh. The 
magnetometer boom is attached to the spacecraft body via springs, and 
sloshing bipropellant is modeled using two pendulums. The higher level 
diagram for the X-axis control system is shown in Fig. 4. The attitude 
commander calculates the required spacecraft attitude and rate. This 
input is sent to the Thrust Vector Controller (TVC), or the attitude 
controller that controls the spacecraft dynamics. The TVC operates on 
the spacecraft dynamics error generated from the attitude commander 
input and feedback from the attitude estimator, and outputs an engine 
rotation angle. This rotation angle becomes an input to the engine 
gimbal actuator (EGA) manager which outputs the required engine gimbal angles. The spacecraft rigid body 
dynamics, magnetometer boom, and bipropellant slosh effects convert this gimbal angle into a spacecraft rotation 
angle about the X-axis. The attitude estimator (gyro) senses this spacecraft attitude and sends the feedback to the 
attitude controller. The process continues until error between the commanded and sensed spacecraft dynamics is 
below the required threshold.  

     
For the ME guidance controller used in this paper, the control system in Fig. 4 is simplified. The processes 

within the attitude commander are ignored and the attitude controller has a step input into the system, which 
symbolizes a constant commanded spacecraft dynamics input. The complexities of the attitude controller are also 
simplified by removing the simulated filters in the system. The attitude estimator is removed from the system by 
assuming a perfect sensor for spacecraft dynamics. The performance of this simplified X-axis control system is 
presented in Fig. 5. The spacecraft rotation angle and rate settle to the commanded rotation angle and rate.  It can be 
concluded that the system exhibits stable behavior.   

 

III. Modeling Nonlinearities 
The Cassini Main Engine guidance controller is modeled as a linear system, however, in reality the system is 

nonlinear. Some of these nonlinear elements include backlash in the gears, resistance from propellant flex lines, or 
other friction mechanisms. For the purposes of this paper, the focus will be on the backlash in the gears.  

In linear systems, there are analytical techniques that can be used to model a system completely. However, when 
dealing with nonlinear systems, there exists dependence between the system response behavior and the magnitude 
and type of input. Nonlinear systems can produce stable outputs or show instability under certain inputs, thus 

 
Figure 5. X-axis Control System Performance 

 

 
Figure 4. Diagram of X-axis Spacecraft Control System 
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making them unstable. Unmodeled nonlinearities in a system can lead to stable limit cycles, which are self-sustained 
oscillations due to a perturbation. The limit cycle charactertics, frequency, and magnitude of oscillation can be 
determined experimentally. The limit cycle frequencies in the Cassini dynamical system decreased from 0.050 Hz 
during the DSM burn to 0.033 Hz after the SOI burn.2 This indicates that the frequency of the limit cycle oscillations 
drops with reducing inertia of the spacecraft. Focusing analytical efforts on the SOI burn, it was determined from 
FFT analysis of the spacecraft X-axis rate that the frequency was 0.033 Hz, and from linear variable differential 
transformer position telemetry that the magnitude was +0.03-+0.04 mm.2 One may argue that since the observed 
limit cycle frequency closely resembles the fundamental frequency of the high-g bi-propellant sloshing motion, 
which is about 0.05-0.06 Hz, that the stable limit cycle emerges from the sloshing motion. This speculation is 
rejected because the fuel sloshing motion is modeled by a second-order system whose settling time is < 2 minutes 
with a natural frequency and damping ratio of 0.05 and 0.12 Hz, respectively,2 whereas the observed limit cycle 
oscillations continue for more than an hour. We propose that the sustained limit cycles occur due to a stable 
interaction between the unmodeled nonlinear elements and linear ME guidance controller. The ME guidance 
controller and the unmodeled nonlinearities in the system have a stable interaction since the limit cycle amplitude 
neither dampens, nor grows over time. In order to verify this claim, the nonlinear elements are modeled via a 
describing function and their interactions with the ME guidance controller are studied. Nonlinear system responses 
depend upon the amplitude of the input signal. Unlike linear modeling techniques (e.g. transfer functions), the 
describing function approach captures the dependence of the nonlinear element on the input amplitude.    

IV. Describing Function 
A describing function is a quasilinear representation of a nonlinear element. It is expressed as the complex ratio 

of the fundamental component of the output to the input 
signal. This nonlinear analysis approach is used to determine 
the stability of unforced nonlinear control systems and 
predict their behavior.  

There are a few methods to model nonlinear elements in 
a system via describing functions; some include hysteresis, 
on-off, dead-zone, and saturation.3 In this study, we focus on 
the nonlinearity that emerges from the gear backlash in the 
engine gimbal actuators. The best way to capture the input-
output characteristics of a gear backlash is through a 
hysteretic on-off model (see VI. Results and Discussion).  

An on-off nonlinearity, also referred to as a two-position 
nonlinearity, is one whose output is either a positive constant 
or a negative constant. Figure 6 shows the input-output 
characteristic curve for both an on-off nonlinearity as well as an on-off with hysteresis.  The main difference 
between the two is that the nonlinearity containing the hysteretic element incorporates a response lag to the input, 
which is the best way to characterize the nonlinearity occurring in Cassini TVC algorithm from gear backlash. 

Now that a describing function has been chosen to approximately model the backlash nonlinearity, it can be 
incorperated into the linear ME guidance controller. A unique relationship between the describing function  and the 
linear elements in the ME guidance control system yields stable sustained oscillations. The interaction between the 
linear ME guidance controller and describing function frequency responses yields the frequency and magnitude of 
the observed stable limit cycle. The frequency is obtained from the ME guidance controller response, while the 
describing function yields the amplitude of the observed stable limit cycle. The intersection of the frequency 
response of the ME guidance controller with the  describing function yields the characteristics of the limit cycle. The 
stability of the oscillations is then determined from the Nyquist condition.3 

V. Model 
The ME guidance controller for the X-axis and nonlinear element is shown in Fig. 7.  
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Figure 6. Input-output characteristic curves 
for a) on-off nonlinearilty; b) on-off 
nonlinearity with hysteresis 
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The error between the commanded dynamics telemetry, R, and estimated dynamics telemetry, ~ , is sent to the TVC 
and then the EGA manager. The output of this error is the required engine gimbal angle, γ. The spacecraft dynamics, 
including the effects from the magnetometer boom and bipropellant slosh, operate on the γ to yield the estimated 
spacecraft attitude, θ. This θ is sent to the transfer function,


~T , which combines the estimated spacecraft attitude 

with the rate and outputs the estimated dynamics telemetry, ~ . The ratio of the system output, ~ , to the commanded 
system input, R, can be represented by a combined transfer function, 










~

~

~ 1

~~~
TTTNTTT

TTTNTTT
RTTTNTTT

R
scpropmagEGATVC

scpropmagEGATVC

scpropmagEGATVC 
               (1) 

 
which comes from equating the elements at the summation junction in Fig. 7. From Eq. (1), the characteristic 
equation of the system becomes 

 
 



 N
TTTTTTTTTNTTT

jG

scpropmagEGATVCscpropmagEGATVC
101 ~~




  
                   (2) 

where the linear ME guidance controller elements, G, are only a function of frequency,  ω. The nonlinear element, 
N, is simplified to only depend upon γ, or 
the input to the nonlinear element. From 
the describing function stability analysis3, 
the system output, ~ , exhibits a limit cycle 
when Eq. (2) is satisfied. In order to 
determine when a stable limit cycle occurs 
and also assess the stability of the system, 
the frequency responses of G and N are 
examined. The three cases illustrating the 
interaction between G and N responses are 
shown in Fig. 8. 

Figure 8 illustrates the loci of G(jω) 
and -1/N(γ) evaluated at a range of 
frequencies, ω, and nonlinear input 
amplitudes, γ. In case a), G encircles N and 
the describing function stability criterion 
states that the system is unstable3. The 
system output, or amplitude, increases due 
to any disturbance until breakdown occurs 
or increases to a value defined by a 
mechanical stop or safety device. In case 
b), G does not enclose N, indicating a 
stable system where no limit cycle occurs 
at steady state.3 In case c), G intersects N 
and a limit cycle occurs at the 
corresponding frequency and amplitude 
determined from the intersection point of 
G(jω) and -1/N(γ). The Nyquist and 

 
Figure 7. X-axis Main Engine Guidance Controller and Nonlinear Element 

 

 
Figure 8. Linear Elements and Describing Function Interaction 
for Determining Limit Cycle Stability. a) Unstable limit cycle, 
b) No limit cycle, c) Stable or Unstable limit cycle 
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describing function stability criteria indicate which intersection point produces a stable limit cycle. The Nyquist 
criterion comments on system stability based upon the encirclements of G of N. From this, the describing function 
stability criterion explains the nature of the limit cycle amplitude.  

In this illustration, points A and D are the intersection points. First, we consider point A. If the system is 
disturbed, the frequency can increase to that at point C. According to the Nyquist criterion, G encircles N at point C 
and thus from the describing function stability criterion, the limit cycle amplitude increases towards that of point D. 
If the system is disturbed the other way, the frequency can decrease to that at point B. Here, G does not encircle N at 
point B and the limit cycle decreases moving further to the left from point A. Thus, the nature of the system around 
point A is divergent and the intersection point A corresponds to an unstable limit cycle. Next, we examine the 
stability at point D. If the system is disturbed and frequency decreases to that at point F, then G encircles N and limit 
cycle amplitude increases to that at point D. If the system frequency is increased to that at point E, then G does not 
enclose N and the limit cycle frequency amplitude decreases to that at point D. The intersection, point D, exhibits 
convergent characteristics and thus corresponds to a stable limit cycle. In practice, only the stable limit cycle is 
observed. 

 

VI. Results and Discussion 
This section will elaborate on the individual elements of the ME guidance controller in Fig. 7. The model used in 

this study is evaluated at the launch mass properties for a 50% bipropellant fill. A comparison between the launch, 
SOI, and model mass properties are shown in Table 1. 
  

Table 1: Mass Properties at Launch and SOI, and Model Mass Properties 
 Launch Pre-SOI Post-SOI Model 

X-Axis Moment of 
Inertia, Ixx, [kg-m2] 

8580 8720 8040 8580 

Propellant mass, [kg] 3142 2089 1240 1571 
Bipropellant Fill, [%] 100 65 40 50 

 
From Table 1, the model parameters correspond to the properties during the middle of the SOI burn. The data 

used in this study represents an average of the process during the entire SOI burn. Thus, the current model 
parameters are used as a decent average for the SOI burn. The components of the TVC block, TTVC, and the 
composite transfer function are shown in Fig. 9.  

 

      
The G and H correspond with the roll-off and guidance filters, respectively and I and O symbolize the input and 

output of the TVC. This closed loop system was combined to yield one transfer function for the TVC. 
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The transfer functions for the EGA manager, magnetometer boom, bipropellant slosh, and spacecraft dynamics 

are given below. 

 
Figure 9. TVC Controller Block 

 



 
American Institute of Aeronautics and Astronautics 

 
 

8 

                 

222

2

2

2

22
2

2

22
2

2
2

2

2

11
2

1

11
2

1
1

2

2

132.0132.00001716.0

103.016.2
103.024.2

1033.055.2
1033.074.2

1002.0045.0
1002.0052.0

1036.0
1

ss
I

s
sT

ss
ss

CsBsA
CsBsAT

ss
ss

CsBsA
CsBsAT

ss
ssT

s
T

mxx
sc

ddd

nnn
prop

ddd

nnn
prop

mag

EGA




































                                        (4) 

The bipropellant slosh components vary based on the bipropellant fill and mass properties of the spacecraft. The 
spacecraft rigid body dynamics are a function of the X-axis moment of inertia and thus vary with the changing mass 
properties. The squared term in the Tsc transfer function in Eqn. (4) is the “Tail Wags Dog”, TWD, contribution. 
TWD represents the tendency of the spacecraft to incur a change in pointing due to the “tail wagging the dog” or the 
engine thrust affecting the spacecraft.  The TWD component from the rigid body dynamics is ignored because its 
contribution is negligible for this model. 

The elements within the dynamics telemetry block,

~T , and the composite transfer function are depicted in Fig. 

10. 
 

 
 

The combined transfer function

~T is determined by evaluating the equality at the summation junction in Fig. 10. 

              30
30181~~6 ~


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

s
sTD
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
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
                         (5) 

The transfer function, D, is an approximation of the derivative operator, s, which does not exist in simulink 
analysis. In this study, the frequencies of interest are ~0.03 Hz. When D is evaluated around these small frequencies, 
as compared with 30 Hz, the derivative operator is the result.       

                        (6) 
 
In Fig. 7, the N(γ) block accounts for the nonlinearity in the ME guidance controller system. A significant 

nonlinear component arises from the freeplay, or backlash, in the motor gear system. The motor gear freeplay is due 
to the loose connection of the teeth between the gears. They are unable to form a tight grip and hence cannot rotate 
the gear system for very small commanded motions. This means that unless the input signal is above a certain 
threshold, the gears are not able to produce any output. In order to add nonlinearity, the previously mentioned 
element called „on-off nonlinearity with hysteresis‟ is used (see IV. Describing Function). The describing function 
for this element is   

 
Figure 10. Dynamics Telemetry Block 
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where N(A=X=γ) is a function of the input amplitude. The h, X, and M are the freeplay coefficient, input signal 
amplitude and nonlinear element output amplitude, respectively. The X is also the limit cycle amplitude. The h is the 
measure of the threshold above which the system responds to inputs.  The model of this element is shown in Fig. 6 
b).  

As shown before in Fig. 6 b), the output stays at zero and then reaches +M when the threshold increases above 
+h. In this study, the h and M values used are 0.000022 and 0.000006, respectively. These values yield the desired 
limit cycle and hence capture the system nonlinearity. With the individual transfer functions for all the elements in 
G(jω) and an analytical expression for N(γ), Eqn. (2) is evaluated at various frequencies, ω , and amplitudes, γ , to 
yield the result shown in Fig. 11. 

       
Figure 11 represents the case where G intersects N, which indicates a limit cycle in the system response. The 

Nyquist and describing function criteria are used to determine whether this intersection point corresponds with a 
stable or unstable limit cycle. In Fig. 11, increasing γ is indicated by a more negative real number. To the right of the 
intersection point, G encircles N. In this case, the limit cycle amplitude increases and moves to the left towards the 
intersection point. The G does not enclose N to the left of the intersection point. Here, the limit cycle amplitude 
decreases and moves to the right towards the intersection point. In both cases, the intersection is a converging point 
and thus corresponds to the stable limit cycle behavior (see V. Model) . The intersection point corresponds to a 
frequency, ω=0.025 Hz and amplitude, A=2.4x10-5 for the limit cycle, thus the describing function theory predicts a 
stable limit cycle with these characteristics. In order to verify the theory, a simulink model for the X-axis ME 
guidance controller with the nonlinear element is created, which can be seen in Fig. 12.  

 
 
 
 
 
 
 
 
 

 
Figure 11. Analytical Limit Cycle Prediction 
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This model is only a reprensentation and simplified version of the actual controller on-board the spacecraft 

(simplified as per Fig. 4). The simulation output and FFT are presented in Fig. 13.  

 
The telemetry data for the X-axis rate from the SOI burn is overlaid on the simulation results. The telemetry exhibits 
a limit cycle with a dominant frequency of 0.035 Hz and 0.5x10-4 amplitude (Fig. 1). In comparison, the simulink 
model reproduces a limit cycle with 0.030 Hz frequency and 0.25x10-4 amplitude. The analytical model predicts a 
limit cycle of 0.025 Hz frequency and 0.24x10-4 amplitude (Fig. 11). The agreement between the telemetry data, 
simulation output, and analytical prediction verifies that the describing function theory can be used to predict the 
observed limit cycle. The discrepancies between the telemetry, analytical, and simulation results arise from using a 
simplified ME guidance controller, inaccurate representation of the actual nonlinearities in the system, and 
inaccurate model parameters. This model is argued to contain an average measure of the actual model parameters 
during the SOI burn as shown in Table 1. A sensitivity analysis is performed in order to understand how large of an 

  
             

Figure 13. Simulated Limit Cycle Prediction and Comparison with SOI Burn Flight Telemetry 
 

 
Figure 12. Simulink Model for the Simplified X-axis ME Guidance 

Controller with Nonlinear Element 
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impact the model parameters have on the limit cycle characteristics. In this study, the effect of model parameter 
variations on the limit cycle characteristics are examined. The bipropellant coefficients, moment of inertia 
parameters, freeplay coefficient, and nonlinear output parameters are varied from 10-1 to 10 times the current 
parameter value used in the model. The effects on the limit cycle frequency and amplitude are shown in Fig. 14, 15, 
and 16. 

 

 
 
 

 

       
Figure 14. Sensitivity Analysis – Bipropellant Slosh 1 Coefficients 
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In Fig. 14 and 15, the varying coefficients indicate the changing percent of bipropellant slosh in the system. The 

nature of the sensitivity is similar for both bipropellant 1 and 2 coefficients. The limit cycle frequency and amplitude 
seem to approach a limiting value as the coefficients increase or decrease. They are not sensitive to deviations 
around the used model parameters. This means that the model is robust to inaccuraries in capturing the actual 
bipropellant coefficients, and slight deviations from the actual do not alter the limit cycle characteristics drastically.  

 

 

      
Figure 15. Sensitivity Analysis – Bipropellant Slosh 2 Coefficients 

 

         
Figure 16. Sensitivity Analysis – Moment of Inertia and Nonlinear Element Parameters 
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      The moment of inertia parameter is directly proportional to the X-axis moment of inertia. The telemetry data 
indicates that the limit cycle frequency decreases with decreasing moment of inertia, or in other words with reduced 
propellant mass.2 In Fig. 16, the limit cycle frequency decreases as the moment of inertia parameter decreases and 
thus confirms this finding from the telemetry. The amplitude of the limit cycle increases with reducing moment of 
inertia and propellant mass. This makes sense because reduced inertia allows the system to move and oscillate more 
readily. Figure 16 also shows that the limit cycle amplitude increases unboundedly with decreasing moment of 
inertia and propellant mass. This raises a concern on the type of limit cycle characteristic for the end of mission. The 
end of mission has the lowest possible propellant mass and thus moment of inertia. In order to better understand the 
effect of the MOI parameter upon the limit cycle characteristics for greater MOI variations, a larger change in the 
MOI parameter is examined. The MOI parameter is varied from 10-5 to 105 of the current value used in the model. 
The results are shown in Fig. 17.  

 
In Fig. 17, the limit cycle frequency increases with increasing moment of inertia (MOI) parameter and reaches a 

limiting value. The amplitude increases, reaching a peak value at an MOI parameter of 0.002 (65 times lower than 
the one used in the model), decreases, and then increases rapidly with increasing MOI parameter. It can also be 
concluded that as the spacecraft consumes propellant and moves towards the end of mission, the limit cycle 
amplitude decreases towards zero. The limit cycle amplitude does not increase unboundedly, which removes any 
concerns for the end of mission scenario. Also from Fig. 17, a spacecraft with a large moment of inertia results in 
large amplitude, high frequency limit cycles with the same nonlinearity. Refering back to Fig. 16, the effect on the 
limit cycle frequency and amplitude with the MOI parameter and nonlinear output amplitude variations exhibit 
similar characteristics. This means that changing the moment of inertia parameter and nonlinear output amplitude by 
the same percentage affects the limit cycle frequency and amplitude equally. As the nonlinear output amplitude 
increases, the period and amplitude of the cycle decrease rapidly. Eventually, this causes the limit cycle to diminish. 
On the other hand, as the freeplay coefficient increases, the period and amplitude of the cycle increase and grow 
larger. This means that with increasing the gear backlash intensity (increasing the threshold above which the system 
responds to inputs), the limit cycles become more prominent and less frequent. The limit cycles have larger 
amplitudes with less number of cycles per unit time in the system. The input and output characteristics of the 
nonlinearity in this model are shown in Fig. 18.  

 
Figure 17: Sensitivity Analysis – A More Varied Change in the Moment of Inertia Parameter 
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From Fig. 18, the nonlinear element responds to the sinusoidal input and outputs a square wave. The amplitude 

of the square wave is the M value of 0.6x10-5, as expected. The FFT on the nonlinear output has the same dominant 
oscillating frequency as the system output seen in Fig. 13. This is because the nonlinear element drives the limit 
cycle in the system and without the nonlinearity the linear system does not exhibit any limit cycle as shown in Fig. 
5.  
 Even though the sustained limit cycle behavior does not pose any significant concerns during spacecraft 
operations, from a controller design viewpoint, it is important to understand the reason behind the limit cycle 
existence. This analysis explains the existence of a sustained limit cycle observed in the spacecraft X-axis body rate 
telemetry from the describing function approach. The stable interaction between the modeled nonlinearity and linear 
ME guidance controller reproduces the observed limit cycle. With this analysis, a phenomenon is presented that 
explains the presence of these limit cycles after long burns. In the current life of the mission, long burns occur 
during the ME OTMs. The dynamics-related telemetry data from the longest ME OTM burns (OTMs 10, 33, and 
144) is presented in Fig. 19.  

                  
Figure 18: Nonlinear Input and Output Characteristics 
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 Orbit Trim Maneuvers 10, 33, and 144 are considered long burns with durations 150 s, 200 s, and 250 s, 
respectively. From Fig, 19, the limit cycle oscillating frequencies are between 0.03-0.05Hz, which agree with that 
from the other long burns like SOI (Fig. 1) and ME OTM 2 (Fig. 2), and are also consistent with the limit cycle 
frequencies obtained from the analytical (Fig. 11) and simulated (Fig. 13) models. Discrepancies occur due to 
different model parameters at the time of OTMs as opposed to the ones used in this analysis. However, the nature of 
the limit cycle and reason for its presence are explained from this analysis. 
 

VII. Conclusion 
In this study, the presence of the stable limit cycles in the ME guidance control system response are explained. 

The linear ME guidance controller does not predict limit cycles, which are observed in all dynamics related 
telemetry after long burns. The limit cycles emerge due to a stable interaction between the linear controller and 
unmodeled nonlinearites in the system. One such nonlinearity emerges from the motor gear backlash. This is 
represented via a describing function, and its interaction is studied in conjunction with the ME guidance controller. 
The analytical theory and simulation results agree with the observed limit cycle characteristics from the SOI burn 
and ME OTM telemetry. The stable limit cycle frequency settles between 0.03-0.04 Hz for the X-axis rate in these 
burns. 

Discrepancies in this work and actual results occurred because the exact model during the SOI burn and ME 
OTMs was not available. An assumed average for the model parameters was used. However, it was found that 
variations from the average model parameters did not affect the limit cycle characteristics drastically. Discrepancies 
also occurred because the complexities within the ME guidance controller such as filters and spacecraft attitude 
estimator were ignored and a simplified ME guidance controller model was used instead. For future work, a more 
accurate model for the ME guidance controller can be used to yield better results. In this study, only the nonlinear 
effect from the motor gear backlash was considered. For future work, all the nonlinearities in the system can be 
modeled and their interactions can be studied with the linear ME guidance controller for more accurate results.  

 
 

Figure 19: Main Engine Orbit Trim Maneuver Telemetry Data 
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For the spacecraft, the limit cycle presence in the Cassini system has not hindered the performance to any degree 
of concern, however, it is important to understand these stable limit cycles from the controller design viewpoint. In 
this analysis, the describing function approach is used to explain the presence of these limit cycles during all long 
burns. In order to avoid the presence of limit cycles in the system, a nonlinear controller could be designed that 
captures the various nonlinearities in the system and counteract these effects on the system output. 
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