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Outline 

• This presentation addresses: 
– Soil Moisture Active and Passive (SMAP) mission and 

instrument overview 
– Implementation strategy 
– Major antenna design drivers 
– Basic antenna configuration 
– Pattern calculations 
– Thermal and dynamic distortions 
– Conclusions 
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Mission Overview 
• NASA’s Soil Moisture Active and Passive (SMAP) 

mission objective is to measure Earth’s soil moisture 
and its freeze/thaw state over a 3 year period 

• Applications: 
– More accurate and longer-term weather 

and climate predictions 
– Earlier drought warnings 
– Improved flood and landslide 

predictions 
– Improved agricultural production 

predictions 
– Better understanding of the global 

carbon cycle 

• Near-polar, sun-synchronous orbit of 680 km 
• Planned launch date of November 2014 
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Instrument Overview 
• An L-band Synthetic Aperture 

Radar (SAR) and L-band 
radiometer share an offset 6-m 
deployable mesh reflector and 
feed 

• The antenna boresight beam is 
pointed 35.5° off nadir 

• The instrument spins at approximately 14.6 RPM around the 
nadir axis 

• The result is a 1000-km swath on the ground 
• The radiometer data is more accurate than the SAR data, but 

has a spatial resolution of about 40-km; the SAR spatial 
resolution is 1 – 3 km 
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Basic Observatory Configuration  

35.5° 

Direction 
of flight 
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Implementation Strategy 
• The 6-m offset reflector is an AstroMeshTM antenna 

from Northrup Grumman, Astro Aerospace 
• The feed assembly is a JPL in-house design 
• Antenna pattern measurements will be done on the 

feed assembly, but not the reflector 
• The radiometer performance calibrations require 

accurate predictions of the antenna radiation 
patterns 

• A tenth scale model of the antenna and spacecraft 
will be built to verify the RF performance model 

• Requirements verification will be done with a 
combination of the feed assembly measurements, 
the scale model data, and analysis 
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Major Design Drivers 
• Optical design 

– The reflector focal length and edge offset were a 
compromise between the RF performance and the spin 
dynamics 

– The focal length was shortened and the edge offset was 
increased to improve spin stability 

• Combined SAR & radiometer RF bandwidth of 16% 
• Radiometer beamwidth & main beam efficiency 
• Radiometer antenna pattern stability requirements 
• SAR gain 
• SAR pointing stability requirements 
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Mechanical vs. RF Model 

• Mechanical Model • RF Model 
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Mechanical vs. RF Model 

• Mechanical Model • RF Model 
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Mechanical vs. RF Model 

• Mechanical Model • RF Model 



Focardi, Brown, YRS - 11 

2011 IEEE International Symposium on Antennas and Propagation 

Radiation Pattern Calculation: Step 1 

• Horn radiation pattern in free space 
• Method: SWE + IE 

Elevation 

Azimuth 

Gain 
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Radiation Pattern Calculation: Step 2 

• Scattering from the spinning platform 
assembly + reflector boom 

• Method: MoM 

Elevation 

Azimuth 

Gain 



Focardi, Brown, YRS - 13 

2011 IEEE International Symposium on Antennas and Propagation 

Radiation Pattern Calculation: Step 3 

• Scattering from the lower ring of the truss 
• Method: MoM 

Elevation 

Azimuth 

Gain 
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Radiation Pattern Calculation: Step 4 

• Reflector radiation + scattering from the 
spinning platform assembly 

• Method: PO + MoM 

Elevation 

Gain 

Azimuth 
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Radiation Pattern Calculation: Step 5 

• Reflector radiation + scattering from the entire 
spacecraft 

• Method: PO + MoM 

Elevation 

Azimuth 

Gain 

Final antenna radiation pattern includes a very high fidelity model of the entire observatory 
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Field-of-View (FOV) Study 
• A series of simulations with the spacecraft spinning under 

the instrument platform was carried out to verify that the 
antenna pattern stability requirement were met. 

• While the effect of the moving parts of the observatory is 
clearly visible in the radiation pattern, the stability 
requirements are met. 

• 4200mm focal length/394.7 edge offset optical design 
• Catenary rim 
• Complete loop around the spacecraft at 15° steps 
• Both V- & H-Pol 
• SAR @ 1.2172, 1.2572 & 1.2972 GHz 
• RAD @ 1.4000, 1.4135 & 1.4270 GHz 
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Animation of the Entire Observatory 

A9 
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Pattern Animation for RAD V-Pol 
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Radiation Patterns – SAR V-Pol 

Elevation Cuts    Azimuth Cuts 

1.2172 GHz 
1.2572 GHz 
1.2972 GHz 

1.2172 GHz 
1.2572 GHz 
1.2972 GHz 
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Radiation Patterns – RAD V-Pol 

Elevation Cuts    Azimuth Cuts 

1.4000 GHz 
1.4135 GHz 
1.4270 GHz 

1.4000 GHz 
1.4135 GHz 
1.4270 GHz 
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Pointing Effect of the Spacecraft Scattering 

SAR V-Pol Pointing 
[deg.] 

No Scattering 0.042° 

000° 0.050° 

045° 0.051° 

090° 0.051° 

135° 0.051° 

180° 0.049° 

RF to Mech. Boresight Bias = +0.050° 
Scattering Bias  = +0.008° 
Stability    = ±0.001° 

• Very small contribution to pointing error 
• Calculation performed at 1.2572 GHz, SAR center frequency 
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Thermal Distortions 

• Thermal distortions of the reflector and boom, 
over an orbit including eclipse, have been 
predicted and analyzed 

• Reflector performance and pointing errors have 
been calculated 

• The mechanical rigid body model and the RF 
PO/MoM analysis are in close agreement 
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Dynamics Studies 
• Several mechanical disturbances map into pointing errors 

– Effect of spinning-up the reflector up to nominal speed 
– Spin torque effect induced by the spin motor once at the 

nominal rotation rate 
– Mass imbalance distortions 
– Reflector surface modal oscillations 

 
• Calculations performed with RF Model 

– Rigid body motions analysis using 6 degrees of freedom for the 
horn and 6 degrees of freedom for the reflector 

– Dynamic modes RF analysis using higher order modal variations 
of the reflector surface 

– RF vs. mechanical boresight bias and stability 
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RBA Modes 1-5 

Mode 1 
1.11 Hz 

Mode 2 
1.38 Hz 

Mode 3 
2.07 Hz 

Mode 4 
4.09 Hz Mode 5 

5.87 Hz 
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RBA Modes 6-10 

Mode 6 
14.69 Hz 

Mode 7 
17.55 Hz 

Mode 8 
20.78 Hz 

Mode 9 
20.95 Hz 

Mode 10 
21.98 Hz 
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Conclusions 

• An detailed RF model of the entire SMAP 
observatory has been created 

• Multiple configurations of the observatory have 
been analyzed, including the impact of the 
spacecraft as the instrument rotates, thermal 
distortions, and dynamic distortions 

• Radiation pattern measurements of the flight 
assembly will not be feasible 

• Much of the requirements verification will be 
based on the RF model performance 
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