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MULTI-BODY CAPTURE TO LOW-ALTITUDE
CIRCULAR ORBITS AT EUROPA

Daniel J. Grebow∗, Anastassios E. Petropoulos∗, Paul A. Finlayson∗

For capture to a 200-km circular orbit around Europa, millions of different points along the
orbit are simulated in the Jupiter-Europa Restricted 3-Body Problem. The transfers exist
as members of families of trajectories, where certain families consistently outperform the
others. The trajectories are not sensitive to changes in inclination for the final circular orbit.
The top performing trajectories appear to follow the invariant manifolds of L2 Lyapunov
orbits for capture into a retrograde orbit, and in some cases saving up to 40% of the ∆v
from the patched 2-body problem. Transfers are attached to the current nominal mission for
NASA’s Jupiter-Europa Orbiter, where the total cost is roughly 100 m/s less than the baseline
mission.

INTRODUCTION

NASA engineers and scientists have long anticipated a mission to Europa. While a mission to Europa
is enticing for many reasons, the primary cause of our allurement is the potential discovery of “habitable
worlds”.1 Scientists speculate that buried beneath the surface of this moon is a water ocean that might
support life.

There are many options for a mission to Europa.2, 3, 4, 5 The currently proposed mission architecture consists
of two spacecraft: the NASA-led Jupiter-Europa Orbiter (JEO) and the ESA-led Jupiter-Ganymede Orbiter
(JGO). The nominal trajectory for JEO would involve many phases, including multiple interplanetary flybys
and over 20 flybys of the Jovian moons.5 Nearing the end of its three-year campaign, eventually the spacecraft
would fall into a cadence, or resonance, with Europa’s orbit. This phase would be just the beginning of what
researchers have dubbed endgame;3 however, considering the dance the spacecraft plays with Europa at this
time, a more adequate description might be courtship. For a final play, the spacecraft would capture into a
200-km circular orbit around Europa. As far as the scientists are concerned, the end of this phase marks the
beginning of what would hopefully be a long list of discoveries at Europa.

Ignoring Earth launch and Jupiter orbit insertion, Kloster et al.5 report that the entire tour would require
less than 1 km/s in deterministic ∆v. Since the bulk of this ∆v is at Europa orbit insertion (EOI), the primary
motivation for the current work is to develop a practical technique for designing an efficient capture at Europa.
Efficient capture means harnessing the gravitational effects of both Europa and Jupiter to lower the insertion
cost. This is primarily a three-body problem, and therefore inherits all the features associated with the three-
body problem, i.e., numerical integration in highly sensitive regimes. Of course, the radiation dose is also a
concern, and therefore a technique cannot lead to unrealistically long trajectories that spend too much time
in the radiation belts.

In the literature, there are only a few studies on efficient capture to low altitude orbits at Europa. Koon et
al.6 utilize the invariant manifolds of periodic orbits for designing a ballistic capture. While this approach is
appealing from a dynamical systems perspective, the final orbit for JEO would be at an altitude from which
ballistic capture is impossible. Still the method might be adapted for designing capture trajectories with low
insertion costs. Campagnola and Russell7 mainly focus on methods for minimizing the apoapsis ∆v’s leading
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up to EOI, however, in another study8 they include a multi-body approach that might be useful for unlocking
efficient capture trajectories. Starting from a 100-km circular orbit around Europa, they numerically integrate
trajectories backwards in the Jupiter-Europa Restricted 3-Body Problem (R3BP). Sampling various departure
geometries, they are able to find a transfer originating from Ganymede that captures with only ∆v = 0.51
km/s, well below the minimum ∆v for parabolic capture in the Patched 2-Body Problem (P2BP). Unfortu-
nately, their method is tied to a very specific mission objective (i.e., transfer from a 100-km Ganymede orbit),
and it is difficult to see how to adapt their approach for a general baseline mission strategy. Furthermore, they
only investigate a planar circular orbit at Europa, and the mission requirements stipulate that the orbit must
be inclined at 95◦ to the equator.

Johannesen and D’Amario3 discuss multiple options for the Jovian tour, each ending with only 520 m/s for
EOI. Since their analysis is more focused on mission architectures, they do not provide a detailed description
of the method used to generate the trajectories. In fact, the algorithm was written by one of the authors (Fin-
layson) on this current paper, and, in brief, goes as follows: A database of stored trajectories are calculated by
starting from a 200-km circular orbit around Europa and numerically integrating three-body equations back-
wards to the first apojove. The precise initial conditions for integration are obtained by applying a maneuver
tangent to the spacecraft’s velocity vector for all possible geometries of an orbit at a prescribed inclination.
Only the trajectories that yield the highest apojoves are stored. While considering phasing between the space-
craft, Jupiter, and Europa, the final Europa flyby is adjusted until a trajectory matches in position with one of
the stored trajectories.

The current work expounds upon the method used by Johannesen and D’Amario to arrive at a more sat-
isfying dynamical understanding of the solutions. Starting with a 200-km circular orbit around Europa, we
also apply maneuvers tangent to the spacecraft’s velocity vector. Recognizing the sensitivity of the dynamics,
a million different locations along the orbit are sampled. Prograde and retrograde orbits are investigated, as
well as when the orbit is inclined at 95◦ to Europa’s orbital plane. The states for the points are simulated
in backwards time in the Jupiter-Europa R3BP, where the final apojove values are recorded. After repeating
the process for various EOI ∆v’s, we notice that each transfer trajectory exists as a member of a family of
trajectories, where certain families consistently outperform others. The most desirable family appears to ar-
rive along the invariant manifolds associated with an L2 Lyapunov orbit. For some of the trajectories, the
∆v savings is as high as 40% of the ∆v computed in the P2BP. The study is completed with a method for
patching the trajectories into the baseline mission for JEO.

SOLUTION APPROACH

Our goal is discovery of efficient capture trajectories that simultaneously leverage the gravitational effects of
Jupiter and Europa. Therefore all capture simulations take place in the Jupiter-Europa R3BP. For a particular
∆v, we seek to find the optimal insertion location to a 200-km circular orbit that originates from a trajectory
with the highest possible apojove.

Equations of Motion

For the Jupiter-Europa R3BP,9 the primary bodies are assumed to move in circular orbits, and the spacecraft
possesses comparatively negligible mass. The standard rotating, barycentric coordinate frame is used, with
the X-axis directed from Jupiter to Europa and the Z-axis parallel to the Jupiter-Europa angular velocity.
The nondimensional form of the equations is

Ẍ = 2Ẏ +X + (µ− 1)
X + µ

d3
− µX + µ− 1

r3
,

Ÿ = −2Ẋ + Y + (µ− 1)
Y

d3
− µ Y

r3
,

Z̈ = (µ− 1)
Z

d3
− µ Z

r3
.

(1)
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where
d2 = (X + µ)2 + Y 2 + Z2,

r2 = (X + µ− 1)2 + Y 2 + Z2.
(2)

In Eq. (1), X , Y , and Z are the components of the spacecraft’s position relative to the rotating, barycentric
frame and µ is the mass parameter.

Methodology

Starting from a 200-km circular parking orbit around Europa, the approach is to apply a maneuver and
integrate Eqs. (1) in backwards time. Since Europa is the dominant gravitating body when the spacecraft is
in the 200-km circular orbit, we only consider maneuvers along the spacecraft’s inertial velocity vector. The
simulations are terminated at the first crossing of the plane Y = 0 where X < 0, and the osculating apojove
is computed. When the trajectory crosses the plane Y = 0 where X < 0, the osculating apojove is very close
to the actual apojove. The method is similar to the one used by Campagnola and Russell.8

To express the capture conditions as initial states for integrating Eq. (1), we first define the spacecraft’s
position and velocity in terms of polar coordinates centered at Europa. The position and velocity are

r = (rc, 0, 0)T , v = (0,
√
µ/rc + ∆v, 0)T , (3)

where the quantity rc is the nondimensional radius of the 200-km circular orbit, and recall µ is the Jupiter-
Europa mass ratio. The transformation T from polar coordinates to an inertial frame instantaneously aligned
with the Jupiter-Europa rotating frame is defined by an Euler 3-1-3 (Ω-i-θ) sequence, i.e.,

T =

 cos Ω cos θ − sin Ω sin θ cos i − cos Ω sin θ − sin Ω cos θ cos i sin Ω sin i
sin Ω cos θ + cos Ω sin θ cos i − sin Ω sin θ + cos Ω cos θ cos i − cos Ω sin i

sin θ sin i cos θ sin i cos i

 , (4)

where 0◦ ≤ i ≤ 180◦. Then, the position and velocity of the spacecraft in the barycentric rotating frame are

R = (X,Y, Z)T = Tr + (1− µ, 0, 0)T ,

V = (Ẋ, Ẏ , Ż)T = Tv − (−Y,X + µ− 1, 0)T .
(5)

For circular orbits in the plane of the primaries, Ω = 0◦. The orbit can be either pure prograde if i = 0◦

or pure retrograde when i = 180◦. For simplicity, hereafter, we refer to pure prograde and pure retrograde
as prograde and retrograde, respectively. The quantities ∆v, θ, Ω, and i encompass all possible capture
trajectories. Furthermore, by Eq. (5), these parameters uniquely determine an initial state for integrating
Eq. (1) in backwards time. In this study we allow ∆v, θ, and Ω to vary for particular values of i.

Delta-v for L2 Jacobi Constant

Jacobi’s constant is a well-known integral of the motion in the R3BP, and has been useful in the past for
understanding strategic placement of maneuvers.10 In barycentric rotating coordinates, the integral is

C = −Ẋ2 − Ẏ 2 − Ż2 +X2 + Y 2 + 2(1− µ)/d+ 2µ/r. (6)

For trajectories entering the Jupiter-Europa system from ranges beyond Europa’s orbit, the minimum possible
∆v for insertion at Europa is the one that makes the Jacobi constant equal to that of L2. At this ∆v a small
corridor, or gateway, opens at L2 enabling low-energy transfer into the vicinity of Europa.11 To compute this
∆v, i.e., the ∆v required to achieve CL2 , we note that Eq. (6) can be expressed in terms of ∆v, θ, Ω, and i
using Eqs. (5). Setting C = CL2

and solving for ∆v yields

∆v = rc cos i−
√
µ/rc +

√
r2c cos2 θ sin2 i+X2 + Y 2 + 2(1− µ)/d+ 2µ/r − CL2

. (7)

For a particular value of i, we are interested in the smallest possible ∆v for all values of θ and Ω. The global
minimum is easily found by looping through θ and Ω and computing ∆v with Eq. (7). As shown in Figure 1,
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Figure 1. For 200-km circular Europa orbit, ∆v necessary to achieve CL2 .

the minimum ∆v varies with inclination. The minimum ∆v to achieve CL2
for polar orbits is less than that

required if the orbit is prograde. If the orbit is retrograde the ∆v necessary is even smaller.

Here we arrive at an important results that is also noticed by Campagnola and Russell.8 Europa’s orbital
motion imparts a rotational component of velocity on the spacecraft, reducing the cost for insertion into a
retrograde orbit. From Eq. (7), the difference in cost for insertion into a prograde orbit (∆vi=0◦ ) versus a
retrograde orbit (∆vi=180◦ ) is

∆vi=0◦ −∆vi=180◦ = 2rc. (8)

For a 200-km circular orbit, this difference is

∆vi=0◦ −∆vi=180◦ = 72.3 m/s. (9)

We note that the variation in cost for insertion to a prograde versus a retrograde orbit depends only on the
radius of the orbit rc, and is independent of the departure location θ well as the Jacobi constant resulting from
applying the maneuver.

Passing through the L2 corridor depends also on the phase space stability, so implementing a ∆v that
is slightly higher than those in Figure 1 does not guarantee that the spacecraft will ever pass through the
gateway. However, the minimum ∆v to achieve CL2

is still useful in that it is the theoretical lower limit for
capture in the R3BP, and is considerably less than ∆v = 558 m/s, or the ∆v for parabolic capture from the
P2BP.

TRANSFERS TO IN-PLANE CIRCULAR ORBITS

The details of our approach are first outlined for transfers to prograde and retrograde orbits in Europa’s orbital
plane. We begin by sampling grid points along the capture trajectory. The grid search provides insight into
various options for approaching Europa, and ultimately serves as a pool of initial guesses for an algorithm
that further refines the trajectories.

Grid Search

Recall that for orbits in the plane of the primaries, Ω = 0◦ and i = 0◦ or 180◦ depending on if the orbit
is prograde or retrograde. Then, for a given ∆v, the goal of a grid search is to determine the optimal EOI
location θ. Due to the sensitivities in the R3BP, it is very difficult to predict a value of θ that maximizes the
osculating apojove ra. To search for these trajectories, we implement an extremely fine grid. For a given
∆v, we examine 1 million capture trajectories where the initial state corresponds to 1 million linearly equally
spaced points between θ = 0◦ and 360◦. As previously described, the trajectories are integrated to the first
crossing of the plane Y = 0 where X < 0. All simulations are performed in Fortran 90 using Shampine
and Watt’s12 Adams-Bashforth-Moulton variable time-stepping integrator. To investigate whether ∆v cost
actually decreases with integration time, we select a 500-day limit for all simulations so as not to exclude
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(b) R3BP to prograde
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(c) P2BP to retrograde
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(d) R3BP to retrograde
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Figure 2. Apojove resulting for applying maneuver at θ; each line represents a unique
∆v ranging from 0.425 (aqua) to 0.675 km/s (magenta); ra is measured in Jupiter-
Europa distances.

long duration transfers from our search. For each trajectory we store the osculating value of ra at the end of
the simulation. Simulations that reach the 500 day limit before crossing the negative X-axis are discarded,
as well as if the Jacobi constant is not preserved within a prescribed tolerance.

The results of the simulations can be visualized in Figure 2 (above), where ra is plotted in Jupiter-Europa
distances. The values of ∆v examined are 0.425 km/s (aqua), 0.475 km/s, 0.525 km/s, 0.575 km/s, 0.625
km/s, and 0.675 km/s (magenta). We also monitor if the trajectory passes below Europa’s radius (gray).
Included in Figure 2 are the curves of ra versus θ for the P2BP for ∆v = 0.575 km/s, 0.625 km/s, and 0.675
km/s. As expected, in the P2BP the curves are smooth and there is one maximum and one minimum for each
∆v. The maxima occur when θ is such that the vector v∞ is in the direction the Europa’s motion. In the
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P2BP the extremal values of ra are the same for both prograde and retrograde orbits.

While the shape of the curves in the R3BP are similar to the P2BP, there are some striking and important
differences. The most noticeable difference is the prominent spiking that occurs in Figures 2b and 2d. The
spikes correspond to Europa flybys not modeled in our P2BP analysis. There is spiking as well for particular
resonances in the P2BP, however, for a particular ∆v, the maximum ra achievable from those resonant
encounters cannot exceed the maximum shown in Figures 2a and 2c. Alternatively, for a given ∆v in the
R3BP, often the spiking peaks yield much larger ra’s than the smooth peaks. For a prograde orbit, we also
note that even the smooth peak in Figure 2b has a larger ra than the peak in Figure 2a.

All the peaks in Figures 2b and 2d are stored and ordered in descending ra. For each ∆v, the top five
trajectories are plotted in Figures 3 and 4, for prograde and retrograde orbits, respectively. The coordinates
x, y, and z in the figures are the spacecraft’s position with respect to Europa, measured in the rotating frame
and units of Europa radii. The gray region is the forbidden zone as determined by the values of zero-velocity
in order to satisfy Eq. (6). We also include a line corresponding to the angle at arrival θ, and the value of
osculating ra for that case is recorded in the title of each subplot. We immediately notice that the same type
of transfer consistently performs well for each value of ∆v. The best trajectory appears to follow an L2

Lyapunov orbit for one revolution, where a Europa flyby then ejects the spacecraft with high ra. In fact, for
some cases the spacecraft follows the L2 Lyapunov orbit for multiple revolutions before leaving the vicinity
of Europa. The other transfers also follow well-known periodic orbits in the R3BP. (For an example of some
of these orbits, see Broucke.13) We notice similar behavior if the orbit is retrograde. (Recall Figure 4 below.)
When the orbit is retrograde, there are no capture trajectories that are not subsurface for ∆v = 0.425 km/s.
However, for the other ∆v’s the ra values are much higher than the best prograde trajectories. Considering
the similarities of the trajectories found in Figures 3 and 4, these preliminary results suggest that the approach
trajectory for optimal capture is not sensitive to the orientation of the 200-km circular orbit at Europa.

Families of Transfers

In this section we come to a more satisfying dynamical understanding of the efficient trajectories found in
the grid search. From Figures 3 and 4, it is not surprising that each transfer trajectory exists as a subset of a
family of trajectories. To this end, we seek to compute a family of trajectories where

dra
dθ

= 0, (10)

d2ra
dθ2

< 0. (11)

A targeting scheme is derived that enforces Eq. (10). Provided the initial guess is close to the maximum, the
algorithm converges to a solution that satisfies Eq. (11), as well. To formulate the targeter, first we need an
expression for the derivative dra/dθ. The derivative appears in the variation of ra, i.e.,

δra =
dra
dθ

δθ. (12)

From Taylor series expansion of ra = ra(Xf (X0(θ), t)) and the chain-rule,

δra =
∂ra
∂Xf

∂Xf

∂X0

∂X0

∂θ
δθ +

∂ra
∂Xf

∂Xf

∂t
δt. (13)

Note that Xf is the resulting six-state from integrating the initial state X0 backwards to the plane Y = 0,
X < 0. The variation δt in Eq. (13) can be eliminated by recognizing that at the crossing Yf (X0(θ), t) = 0,
so the variation is

δYf =
∂Yf
∂X0

∂X0

∂θ
δθ +

∂Yf
∂t

δt = 0. (14)

Solving for δt in Eq. (14) and substituting into Eq. (13) results in the expression

δra =
∂ra
∂Xf

[
∂Xf

∂X0
− Ẋf

Ẏf

∂Yf
∂X0

]
X0

∂θ
δθ. (15)
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Figure 3. Top trajectories for transfer to prograde circular orbit; origin is Europa,
units are Europa radii.

Hence, to satisfy Eq. (10) we desire that

g(θ,∆v) =
∂ra
∂Xf

[
∂Xf

∂X0
− Ẋf

Ẏf

∂Yf
∂X0

]
X0

∂θ
= 0. (16)

Initial guesses for θ and ∆v are available from the grid search, and a minimum-norm Newton’s method finds
the precise conditions Yj = (θj ,∆vj)

T such that g(Yj) = 0. From Yj a guess for a nearby solution in the
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Figure 4. Top trajectories for transfer to retrograde circular orbit; origin is Europa,
units are Europa radii.

family is available from
Yj+1 = Yj + sŶj , (17)

where Ŷj is a unit vector in the nullspace of Dg(Yj). To converge to the neighboring trajectory, the new
system of equations to solve is

F(Yj+1) =

{
g(Yj+1)

(Yj+1 −Yj)
T

Ŷj − s

}
= 0. (18)

Note that included in F is the pseudo-arclength constraint enforcing that the distance between the jth and
jth + 1 solutions, projected into the nullspace of Dg(Yj), is a fixed value s. The process repeats in a method
of continuation, until either the peak switches from local maximum to minimum, or the trajectory at some
point passes below the surface of Europa.
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While continuing the family, it is important to monitor the sign of Ŷj+1 to keep moving in the same
direction along the family. The sign is determined such that ŶT

j+1Ŷj is always positive. For each solution,
we check that the condition of maximality is satisfied, i.e., Dg(θ) < 0. The scaling of the variables ∆v and
θ is also important. For all the families in this study, a dimensional value of ∆v (km/s) is used, and for θ
one revolution is set to unity. In general, the value of s in Eqs. (17) and (18) is allowed to change along the
family, however, a fixed value of s = 0.0075 is sufficient for computing all the families in this study. This
continuation method has found great success in the literature14 and is a key component to computing various
families of trajectories for efficient capture at Europa. As evidenced in Figure 2, these transfers are extremely
sensitive to small changes in θ and ∆v, and therefore a robust continuation scheme is critical for a successful
algorithm.

For both prograde and retrograde, three families are identified corresponding to the smoother peaks in
Figure 2. (See Figure 5.) The peaks outlined by these families are shown in Figure 6. When selecting peaks
in Figure 2 to examine more closely, we want to be sure to take a closer look at trajectories that continually
give high performance ra in Figures 3 and 4. However, we also want to investigate the smooth peak that
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Figure 6. Line of peaks for the families.

closely resembles the one in the P2BP. Jagged peaks likely correspond to trajectories that orbit Europa many
times before leaving the vicinity. While these trajectories are also fascinating, we are more interested in
trajectories that quickly depart from Europa. In general, the smoother the peak in Figure 2, the faster the
trajectory leaves Europa. For now, we leave the discussion of the performance of these trajectories for a later
section.

TRANSFERS TO 95◦-INCLINED CIRCULAR ORBITS

Investigation of planar capture trajectories is fascinating from a dynamical standpoint, yet ultimately we
seek transfers to a nearly polar orbit. The currently envisioned mission calls for an orbit inclined at 95◦ to
the equator. Since Europa is tidally locked, we assume the inclination can be measured with respect to the
orbit plane of the primaries. When the inclination is fixed at i = 95◦, in the P2BP there are two peaks in
apojove ra, both for values of θ and Ω that align the vector v∞ with Europa’s velocity. An example of when
∆v = 0.575 km/s is plotted versus θ and Ω in Figure 7. The ra-axis (z-axis) is attached to the color scale to
the right of the plot. Apojove for the two peaks is roughly equal to 1.08 times the distance between Jupiter
and Europa.

Figure 7. Apojove for all possible θ and Ω in the P2BP, i = 95◦.
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Similar to the study of planar trajectories, a grid search is performed for 3-dimensional transfer trajectories
in the R3BP. Once again, trajectories are integrated for each value of ∆v, and osculating values of ra are
recorded when the trajectory first crosses the plane Y = 0, X < 0. The initial states correspond to all
combinations of 1,000 linearly equally spaced points for θ and Ω ranging from 0◦ to 360◦. The results of
the grid search are plotted in Figure 8. Due to symmetries about the X-Y plane in the R3BP, the plots in
Figure 8 also possesses symmetry. For initial conditions in the white region, either the Jacobi constant is not
preserved to sufficient accuracy, or the trajectories fail to leave Europa after 500 days. Recall that the gray
region corresponds to trajectories that pass below Europa’s surface. For larger ∆v’s, there are two subtle
peaks and valleys, similar to the P2BP example in Figure 7. The prominent spiking between those peaks and
valleys is associated with trajectories that re-encounter Europa before leaving. For the values of ∆v sampled,

Figure 8. R3BP apojove resulting for applying maneuver at θ and Ω, i = 95◦; the
colorbar to the right indicates the value of ra in Jupiter-Europa distances.
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the darkest red always occurs in these special regions. We note also that the highest peak for ∆v = 0.575
km/s is about ra = 1.32, a value much higher than the P2BP maximum of 1.08 (recall Figure 7). The top
five trajectories for each ∆v are plotted in Figure 9. As expected due to the symmetries in the R3BP, the
trajectories shown in Figure 9 occur in pairs. The shapes of the top performing trajectories for i = 95◦

are similar to the best trajectories from i = 0◦ and 180◦. The performance of the trajectories that yield the
highest ra is between that of i = 0◦ and 180◦, with i = 180◦ giving the best results. (For example, compare
the ra’s recorded in each row of Figures 3, 4, and 9.)
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Figure 9. Top transfers to circular orbit where i = 95◦; origin is Europa, units are Europa radii.
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As with the planar transfers, transfers to circular orbits inclined at i = 95◦ are characterized as members
of families. Each peak in Figure 8 serves as an initial guess for an algorithm that adjusts θ, Ω and ∆v until

dra
dθ

= 0 and
dra
dΩ

= 0. (19)

These conditions are equivalent to the vector constraint

g(θ,Ω,∆v) =


∂ra
∂Xf

[
∂Xf

∂X0
− Ẋf

Ẏf

∂Yf
∂X0

]
X0

∂θ

∂ra
∂Xf

[
∂Xf

∂X0
− Ẋf

Ẏf

∂Yf
∂X0

]
X0

∂Ω

 = 0. (20)

Once Eq. (20) is satisfied, Eq. (17) makes a prediction for a nearby transfer in the same family, where now
Yj = (θj ,Ωj ,∆vj)

T , and Ŷj is a unit vector in the nullspace of Dg(Yj). The equations for continuation
are Eq. (18), and g is replaced by the vector constraint g in Eq. (20). As the continuation progresses, it is
important to monitor the eigenvalues of Dg(θ,Ω) to ensure that solution corresponds to a local maximum.

The families examined for i = 95◦ are plotted in Figure 10. From Figure 10c, it appears that the c-type
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family is following either an L2 axial orbit before insertion, or the invariant manifolds of an L2 vertical orbit.
(For examples of vertical and axial orbits, see Doedel et al.14). While these families are more thoroughly
discussed in the following section, for now we briefly mention that the a-, b-, and c-type trajectories appear
to exist for all values of i.

ANALYSIS OF RESULTS

The results for the families are discussed and an algorithm is presented for attaching efficient capture tra-
jectories to a baseline mission. Two different capture options are proposed for the current JEO mission
architecture.

Comparison of Families

We are now in a position to compare the ra performance of the a-, b-, and c-type trajectories. In Figure 11,
ra is plotted as a function of ∆v for the trajectories in each family. Also included in the plot is the ra
achieved in the P2BP for values above the ∆v required for parabolic capture. While the minimum theoretical
∆v for capture from ra = 1 is 556 m/s, in the R3BP there are ∆v’s as low as 402 m/s that originate from
ra = 1.19. These trajectories are part of the c0 family (orange). For only 50 m/s more, the c180 family
(magenta) includes a transfer from ra = 1.3. We note that while all the R3BP families yield better results
than the P2BP, the b- and c-type trajectories consistently outperform the a-type trajectories. An interesting
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Figure 11. ra versus ∆v for each family.
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trade occurs at ∆v = 550 m/s between the b95 (gray) and c95 (purple) families. Below ∆v = 550 m/s, the
c95 family includes trajectories from higher ra’s, whereas above 550 m/s the b95 family gives the higher ra’s.
In fact, for the c95 family, ra briefly decreases following 550 m/s.

To measure the performance of the trajectories, consider the minimum ∆v, single burn strategy necessary
to transfer from ra in the P2BP. Assuming the spacecraft is already on the inbound trajectory from ra, the
minimum ∆v corresponds to insertion from a Hohmann transfer arc. The ∆v at insertion is

∆vP2BP =

√√√√√√2ra(1− µ)

1 + ra
−
√

1− µ

2

+
2µ

rc
−
√
µ

rc
. (21)

Then, the fractional savings in ∆v using a multi-body transfer from the same ra is

η =
∆vP2BP −∆vR3BP

∆vP2BP
. (22)

We compute η for the a-, b-, and c-type trajectories, and the results are plotted in Figure 12. To appreciate
the importance of these results, compare a multi-body transfer from ra = 1.3 to the equivalent minimum-
energy Hohmann transfer. Ignoring the ∆v at apojove and assuming the spacecraft is already on the inbound
transfer from ra = 1.3, the Hohmann transfer ∆v for insertion is about 750 m/s. For an alternative single
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15



burn strategy, from Figure 12 we see there is a transfer trajectory in the c180 family that saves 40% of this
∆v. The trajectory achieves the same objective for 300 m/s less.

Mission Oriented Examples

Attaching a multi-body trajectory to the baseline mission is a critical step in verifying the usefulness of
these trajectories for mission design. Here we demonstrate that it is not essential to start with an a-, b-, and
c-type trajectory that perfectly matches the spacecraft-Jupiter-Europa phasing of a nominal mission.

The envisioned baseline for JEO is the tour T08-008 presented in Kloster et al.5 The final phase of the
tour before insertion is depicted in Figure 13. The last flyby before capture is the E24 flyby on June 12,
2028, where the incoming v−∞ = 1.17 km/s. Since we desire a ballistic flyby, the magnitude of the post
flyby vector v+

∞ must also equal 1.17 km/s, however, in general the direction is allowed to vary. Assuming
the position of the spacecraft coincides with Europa, Eqs. (1) are then integrated with µ = 0 to successive
apojoves R−ra . At capture, we note that for each multi-body family of trajectories, θ and Ω are functions
of the insertion ∆v. Guessing a reasonable ∆v, we interpolate the values of θ and Ω from the family data
and integrate backwards to successive apojoves R+

ra . For the backwards integration, µ is the actual Jupiter-
Europa mass ratio. The number of apojoves selected depends on both the resonance of the trajectory and
which apoapsis is selected for the match point. For our study, we investigated the effects of placing the match
point at all possible apoapses. A velocity discontinuity, or ∆vra , is allowed at the match point. This velocity

Figure 13. Courtship phase for tour T08-008.5
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discontinuity represents a maneuver at apojove. In brief, the variables of the algorithm are

Y =

{
v+
∞

∆v

}
, (23)

where the constraints to satisfy are

F(Y) =

{
||v+
∞|| − ||v−∞||
R+

ra −R−ra

}
= 0. (24)

In Eq. (24), both R+
ra and R−ra are measured with respect to the Jupiter-Europa barycenter. Guessing a

reasonable Y, a Newton’s method satisfies the constraint Eqs. (24). Once a solution is found, it is important
to check the angle between v+

∞ and v−∞ to ensure that the altitude of the flyby is acceptable.

The algorithm successfully attaches a trajectory from the c95 family to the end of the T08-008 tour. Post
E24 flyby, the trajectory is plotted in Figure 14. As in Figure 13, the time of flight is measured in days past
May 5, 2028. The trajectory requires 19 more days than the T08-008 tour. Kloster et al. report a maneuver
between E24 and EOI at 66 m/s. The ∆vmp for the trajectory shown in Figure 14 is 153 m/s. Whereas the
insertion ∆v for the T08-008 tour is 707 m/s, the c95-type trajectory only requires 436 m/s. The total savings
is 118 m/s. This is a significant savings representing roughly 15% of the entire ∆v allotted for the Jovian
tour.

As an alternative, insertion following the E23 flyby is perhaps a better strategy. The E24 flyby puts the
spacecraft in a 6:5 resonance with Europa with low apoapses that might be costly in terms of radiation dose.
We can discard the 6:5 resonance and capture following the 4:3 resonance by using a b95-type trajectory. The
post E23 trajectory is shown in Figure 15. Here ∆vra = 99 m/s and performed at the first apoapsis following
E23. Europa orbit insertion is 4.3 days earlier than the T08-008 tour, and the total ∆v required is only 27 m/s
more than the nominal T08-008 tour.

We want to stress that the ∆vra is non-optimal with this method. These options for capture serve as initial
guesses for an optimizer that further reduces the total ∆v in a full ephemeris model and with fully integrated
propagation. We speculate that the total cost can be lowered perhaps by 50 m/s more via optimization.

CONCLUSION

Millions of trajectories for capture at EOI are investigated. Prograde and retrograde orbits are considered,
as well as a 200-km circular orbit inclined at 95◦ to the Jupiter-Europa plane. An algorithm is presented for
computing the trajectories as members of a family of transfers, and three new types of transfer are identified.
The trajectories are evaluated in terms apojove performance. The top performing trajectories appear to follow
L2 Lyapunov orbit invariant manifolds leading to capture to a retrograde orbit, and in some cases saving up
to 40% of ∆v from the P2BP. A method is developed for patching the trajectories into a baseline tour, and
two capture trajectories are proposed for the current JEO baseline mission. While the first option saves over
100 m/s in ∆v, the second option might be more useful in that insertion occurs following the 4:3 resonance
and without a significant penalty in ∆v.

This solution approach for identifying capture trajectories can easily be adapted for a study of escape
trajectories. Due to the symmetries in the R3BP, the apojove performance for the escape trajectories is
equivalent to that for capture. Furthermore, the method is not dependent on a specific inclination, nor does
it require the circular orbit be at 200-km altitude. An interesting application for this approach might be the
investigation of transfers to low-altitude lunar orbits that originate from the smallest possible perigee.

Future work includes exploring unstable periodic orbits as waypoints to Europa. Adapting the method
proposed by Koon et al.,6 the keys to an even better understanding of the results presented in this work may
involve the study of invariant manifolds of periodic orbits nearby Europa.
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Figure 14. Attaching a c95-type trajectory at E24 of the T08-008 tour; rotating,
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