Page 1

Current-Sensitive Path Planning for an
Underactuated Free-floating Ocean
Sensorweb

Kristen P. Dahl, David R. Thompson, David McLaren, Yi Chao, Steve Chien

Abstract— This work investigates multiagent path planning
in strong, dynamic currents using thousands of highly
underactuated vehicles. We address the specific task of path
planning for a global network of ocean-observing floats. These
submersibles are typified by the Argo global network consisting
of over 3000 sensor platforms. They can control their
buoyancy to float at depth for data collection or rise to the
surface for satellite communications. Currently, floats drift at a
constant depth regardless of the local currents. However,
accurate current forecasts have become available which present
the possibility of intentionally controlling floats’ motion by
dynamically commanding them to linger at different depths.
This project explores the use of these current predictions to
direct float networks to some desired final formation or
position. It presents multiple algorithms for such path
optimization and demonstrates their advantage over the
standard approach of constant-depth drifting.

1. INTRODUCTION

N 1999, the Argo Program began an initiative to

place 3,000 free-floating submarine sensors across
the world’s oceans as part of an integrated global
observation strategy [1]. Over 50 research agencies from 18
countries contributed to what is now an array of 3,250 floats.
These sensors take temperature and salinity measurements
from the top 2000 meters of the ice-free oceans. They collect
data during 10 day cycles; at the end of each cycle, they
perform a six-hour rise to the surface and upload this data to
the satellite Jason. The data collected is immediately
uploaded to an open-access database under the control of
project GODAE (Global Ocean Data Assimilation
Experiment) [1]. An external bladder allows the floats to
move to different depths by changing density, but lateral
movement is not propelled by the float itself. Instead, strong
ocean currents push the sensors along with them.

Argo’s coverage goal was to place one float every 3
degrees in latitude and longitude. Typically, research ships
deploy the sensors, but sometimes merchant ships are used
to extend drop-off areas. The floats are built to last for
approximately 150 10-day sampling cycles, and the entire
array of 3,000 floats requires over 800 deployments per year
to maintain. Aircraft or charter ship deployments are often
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necessary to get coverage in the southern-most areas. Sensor
coverage is a significant ongoing problem since currents can
cause floats to gather in groups or miss areas of the ocean.
Proposals for improving coverage involve augmenting the
existing network with additional floats. Maintaining this
network, and replacing floats after they exhaust their battery
power, is a significant ongoing expense.

This work investigated path-planning algorithms to
allow the floats to exploit strong, time-varying ocean
currents. We used ocean current forecasts to design float
mission plans in the form of depth profiles (a list of desired
depth at each moment in time). In the proper current field,
these plans direct floats purposefully towards a desired
configuration and improve coverage. One possible objective
is dispersion, in which floats spread out from each other so
that multiple floats can be deployed in the same location by
a single airship and expand to cover a broad area.
Alternatively, mission planners could move a float to a
certain specific location, facilitating pick-up for repairs or
replacement. This can be used whenever a large number of
floats need to be retrieved; operators can direct the network
to reunite in a central area to facilitate the retrieval process.
Exercising purposeful control over float locations can prove
useful in maintaining the Argo array coverage and may
potentially reduce the cost of sustaining the network.
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Fig 1. shows the configuration of Argo floats as of January,
2011. Some areas, such as the Sea of Japan, are congested by

floats, and others,
unmonitored [2].

particularly near the poles, are

A series of simulations using predicted ocean currents



from the HYCOM (HYbrid Coordinate Ocean Model)
database [4] were run to perform a direct comparison
between existing strategies and current-sensitive mission
plans.

We modeled float trajectories with records of ocean
currents from August 2010, available from GDACs (Global
Data Assembly Centers) [4]. We designed paths to achieve
two major objectives: (1) to maximize coverage area, and (2)
to direct floats to a target endpoint. We tested several path
planning algorithms and cost functions designed to optimize
these goals. These computed command sequences that
would instruct the floats to linger at various depths and
durations until the next communications opportunity. We
then simulated float trajectories based on the traditional
Argo control policy (maintaining a constant, fixed depth)
and the new adaptive approach. This indicated how the
network configuration was expected to evolve under each of
the control strategies. Through these simulations, we directly
compared the ability of current-sensitive approaches to
achieve Argo mission objectives. These simulations suggest
that current-sensitive control strategies can be more effective
than the current Argo method for achieving these objectives.

II. CURRENT PREDICTIONS AND MOTION MODEL

Many projects have explored path planning for
autonomous vehicles. However, ocean travel introduces
specific challenges. In contrast to path planning on land, the
ocean requires a 3D space; depth adds an extra controllable
dimension to position [8]. Our model depicted this 3-
dimensional space in latitude, longitude, and depth, and
tracked the position of gliders as they were propelled by
strong ocean currents.

Simulations used ocean current data made available by
HYCOM, a part of GODAE that combines efforts from
many different organizations. The ocean prediction program
runs daily at the Navy DoD Supercomputing Resource
Center, and results are published within 48 hours of being
generated [3]. Physical locations and their corresponding
ocean currents are available to 1/12° equatorial resolution
and seven kilometer average horizontal spacing [4]. The data
set offers velocity measurements (both magnitude and
direction) describing ocean currents for any location
specified by time, latitude, longitude, and depth, with
currents assumed to be constant over each day. Predictions
are provided up to four days in the future. Generally, ocean
currents were stronger near the surface and weaker at lower
depths. Equatorial latitudes tended to have stronger streams.

These forecasts inform a simple forward model to
calculate floats’ future positions. Our simulation computes
the future network configuration for each of 7 timesteps into
the future at a time resolution At.

Currents are considered discrete in the time dimension,
where the velocity takes the value measured at the timestep
directly before it. At any exact time in the continuous
spectrum, the simulation assumes the time to be the nearest
entry within the time vector:
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At

The simulation involves »n floats over T timesteps. The pair
x; = [latitude, longitude] specifies the float’s position on a
2D map at time 7. Floats generally move at the velocity of
their surrounding current field. For a local current at depth d
given by velocity v(d, x,) the motion equations in two
dimensions yield a single float’s location at the timestep ¢ +
At:

L = {—t‘m’“ J *At . €))

X1 =X+ At v(d, x;) 2)
By assuming that currents are constant over each timestep,
the simulation can compute each float’s trajectory for the
entire length of the simulation.

This model fails in several contingency cases including
shallow waters (where the floats may attempt to travel to a
depth greater than the ocean floor’s depth) and coastlines
(where the floats may run ashore). In these cases our forward
simulation does not move the float but instead flags the
collision incident with a token that can be interpreted later
by the path cost function. Through this method, the floats
are kept contained inside the boundaries of bodies of water.

III. CoSsT FUNCTIONS

The path planning algorithms used various cost functions
to evaluate the utility of a candidate network configuration
L. For our purposes, a “configuration” was the spatial
location, in latitude and longitude, of all » floats in the
network at a given timestep. We used superscripts to index
floats in the network and subscripts to index time, so that a
configuration consists of the set X; = {xl ‘ xzt, e, X

A cost function mapped the set of float locations onto a
real-valued utility score. Such cost functions were written
with two priorities in mind: minimizing computational
complexity and accurately quantifying the desirability of a
float configuration. Cost calculation was the most expensive
part of the forward simulation, particularly in simulations
involving many floats (on the order of hundreds or
thousands), so we designed our evaluation strategies to
achieve linear time complexity.

Each cost function included a term to prevent floats from
entering shallow waters or colliding with coastlines. The
forward model marked any locations where a float collides
with either the ocean floor or the coast. Configurations were
penalized in proportion to the number of grounded floats. A
separate term in each cost function calculation, denoted as
A(X), distributed a penalty p to those paths that encounter
land.

AX) =2 [p if ¥, is obstructed, 0 otherwise] — (4)

This caused a preference for paths that result in fewer
grounded floats: should two floats be grounded
simultaneously, cost minimization dictated that the first
would be rewritten to avoid land, even if the second could
not be rerouted. If A(L,) reflected only the presence or
absence of the token, and not the number of appearances,
neither path would be rewritten since the revision of only the
first path would not improve cost. Our structure for this extra



penalty term allowed algorithms to escape such a loop of
multiple grounded floats.

A. Coverage Maximization

Visiting a wide range of geographic locations provides a
more diverse dataset to assimilate into global prediction
models and improves the overall utility of the network for
modeling. One of the cost functions used in our project
favors dispersed configurations. Under weak assumptions
about the measured process, such configurations maximize
information gain and are therefore preferable from an
experimental design perspective. Work done by Krause and
Guestrin [5] suggests a method for measuring information
gain explicitly using the mutual information of observations
with respect to all locations of interest. This calculation
could be computationally prohibitive for thousands of floats
and millions of potential sampling locations. We desire
efficient approximations that will improve sensor placement
by distancing floats from each other. This requires pairwise
distance calculations between floats, which could be an
intractable calculation of O(#’) or O(n log n) with
appropriate caching structures like kd-trees.

For arranging sensors on a 2D plane, a heuristic
approximation of the maximum mutual information can be
achieved by spreading sensors uniformly throughout the area
of interest. This approximation disregards edge effects,
which we prefer to handle using coastline penalty terms so
that investigators can control the collision penalty according
to their tolerance for risk. We employed a maximum-spread
cost function that drives the network to separate the floats
from each other.

Here we propose a linear time maximum-spread objective
function. Rather than compute pairwise distances between
all floats, it implicitly computes distances between each float
and a fixed number of map grid squares. It places a two-
dimensional Gaussian kernel of unit density centered on
each float’s location, denoted g(lat, lon), and evaluates the
result for each map grid square. This yields an isotropic
“sensing footprint” — a local region of influence for which
the float’s sensor data is informative. =~ We calculated the
total coverage benefit of a single sensor by integrating its
footprint over the mapped area. Additional measurements
from nearby floats introduce redundancy, so we combine
overlapping footprints with an element-wise maximum
operator. This yields a density no greater than that of the two
floats’ footprints if they were taken independently. The
element-wise sum of the resulting map yields the total score
for that configuration. This cost function could easily be
implemented as a parallel operation, or in specialized GPU
hardware as filtering operations on a 2D map “image”.
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Input: Float Locations X;

Output: Cost Cpyer(X))

1 Initialize map Mjgg.729 to zero

2 for each x', = [lat, lon] in X, do

3  M=max (M, g(lat, lon))

4 M =max (M, g(lat, lon+360))
S K= My.1s0, 130:540

6 C=A(X)+ ||Kll;

7 return-C

Cost Function 1: Function to maximize coverage. M is expanded to
encompass two complete passes through longitude. This eliminates any
inaccuracy in distance calculations when passing through the prime
meridian.

For the sake of consistency, the final calculated value of
this cost function was made negative. Because our
optimization favors lesser cost, it prefers a larger kernel sum
and therefore a greater covered area.

B. Motion Toward a Specific Target Location

Another cost function directs the floats towards a target
location y specified by latitude and longitude. This ability
may be useful in coverage maintenance: a damaged float can
be replaced by sending another to its location. Also,
directing a large number of floats to some single, central
location would greatly facilitate their collection for retrieval
and potential re-use. This cost function might also task
floats to cover specific regions of interest or transient
phenomena as one element of a dynamic ocean sensorweb.
The total cost is given by the mean distance between each
float and the target.

Ctarget(y’ XJ =A(‘X» +1/n Z‘f||y'xft|| (5)

IV. PATH PLANNING ALGORITHMS

Other path planning applications have employed many
different algorithms to select the optimal control strategies
for dynamic current environments. These various approaches
can generally be divided into grid-search and potential field
algorithms. Alvarez et. al. explored and implemented a
genetic algorithm for a UAV in an ocean environment based
on the Darwin theory of natural selection. As this work
noted, genetic algorithms are typically vulnerable to local
minima. However, the process presented by this group
managed to reliably converge to the global minimum, even
in fields where local minima exist [9]. Warren explored in
great depth the potential field approach to path planning.
Positive fields were placed around obstacles and negative
fields around destination or goal positions, and vehicles were
pulled towards the negative, attractive pole [10]. Wavefront
expansion is a third technique commonly used in path
planning. In the presence of strong currents, however, the
method becomes unreliable and may return paths that are
physically impossible for vehicles to traverse. Soulignac et.
al. solved this problem by developing a sliding wavefront
expansion system. This method was based on the original
wavefront expansion but corrected for the influence of



strong air or water currents, and was able to guarantee a
feasible path to some specified precision [11].

The float planning problem has several unique challenges
that demand entirely new algorithmic approaches. First,
float planning involves controlling many tens or thousands
of floats simultaneously. This is an order of magnitude
larger than any existing AUV fleet and produces a
configuration space with thousands of dimensions at any
timestep. Additionally, the floats are highly underactuated
and most locations on the map are unreachable by any one
float. Often, paths are completely determined by current
conditions, and reasonably strong currents can render entire
subsets of the fleet uncontrollable. Under these
circumstances, individual floats deployed at similar locations
can exchange plans with no real affect on the resultant paths.
Finally, the utility of any one float’s plan may be strongly
coupled to the data collected by its neighbors, so the
maximum coverage problem cannot easily be decomposed
into independent single-float planning.

For simplicity, we ignore the time spent transitioning
between depths. For Argo floats, this transition time
amounts to 6 hours. Our simulations considered timesteps on
the order of multiple days, so the time required to rise and
sink to depth became insignificant and was therefore
ignored. We represent the path plan for a single Argo float f
using a depth profile: a list D' ={d',, &>, ... d'7} of desired
depths at each timestep, with no other constraints on
permissible depth levels. Each float was assigned a separate
and independent depth profile, and the combination of all »
floats’ profiles formed an N-by-T matrix representing the
policy for the entire network over the course of a mission.
Each column of this matrix, then, detailed a depth profile D
for a single float, with D' not necessarily equal to 1. The
planning problem involves finding an N-by-T matrix which
optimizes the objective function when combined with
current predications.

The high-dimensional configuration space of the multi-
robot planning environment precludes an exhaustive search.
Under these circumstances many path planning systems
employ a myopic or heuristic search to improve
computational efficiency [6]. In this project, we explored
two traditional approaches modified for our particular use: a
“constant depth” algorithm and a variable depth, or “greedy”
algorithm. The constant algorithm places strong constraints
on the flexibility of each vehicle’s profile, but evaluates cost
based on the entire simulation period. Conversely, the
greedy algorithm permits considerable flexibility of motion
but looks only one timestep into the future.

A. Constant Depth Algorithm

As the name indicates, the constant depth algorithm
considers only depth profiles that maintain a single depth
throughout the simulation. For a given location in the ocean,
there are m possible depths between the ocean floor and the
water’s surface. We constructed a depth profile for each
float by setting &,=%, where ¥ is specific to each float but
constant across timesteps. We initialize all values of ¥
randomly, and then iteratively update ¥ for each float in
turn, selecting a new value that minimizes the cost on the last
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simulation timestep given the depth profiles of the other
floats. We continued iterating until the depth profiles did not
change. Note that the existing Argo control strategy can be
described as a universal constant-depth policy for a single,
fixed depth of 2000 meters. We will use the Argo policy as a
baseline performance benchmark in later experiments.

B. Greedy Algorithm

The greedy algorithm assigns depths based only on the
immediate future timestep. This dramatically reduces the
expense of its calculations, which expand only a single
branch of the expansive policy space. This algorithm is
particularly suited for near-term applications using
HYCOM, since accurate current predictions are only
available over short horizons.

Our greedy algorithm traverses the depth profile one
increment at a time, expanding only the current timestep. It
selects the depth for time ¢ which results in the lowest-cost
configuration at time #+/.

Input: Initial float locations X;
Output: Plan M ={d, for each £t}

1 for each timestep ¢

2 for each iteration

3 for each float

4 ¢ —w

5 for each possible depth d" do
6 forward simulate xft+ ] — xft + At v(cf X, P
7 if C(X;+;) < c” then

8 ¢ —C(Xp1)

9 ; —

1

0 return M = {d, for all floats, timesteps;

Algorithm 1: Purely greedy algorithm selects the depth at each
timestep that yields the minimum-cost configuration at the timestep
directly following. Subscripts f and ¢ refer to the float and timestep,
respectively. Each iteration looks for the top-performing depth d”
with cost ¢’

The myopic algorithm expands as few branches as are
necessary. At timestep #+I, every path considered has
identical depths assigned to timesteps 0 to ¢. This gives the
algorithm a narrow scope, but the expense of this process is
extremely small since only a small number of positions are
computed at each timestep (one for each possible float and
depth). It may be worthwhile to employ a multi-step greedy
algorithm, which would look forward two or three steps
when choosing a depth for a given timestep. For our study,
however, inexpensive calculation took priority, so only the
next immediate timestep was considered. Additionally, our
study used current prediction data from HYCOM which is
most reliable for short-horizon planning. Thus we deemed a
short-sighted greedy algorithm more appropriate.



V. EXPERIMENTAL METHOD
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Fig 2. illustrates the random placement of 25 deployment locations
used to test the coverage maximization cost function.

Multiple tests evaluated the two path planning algorithms.
We used HYCOM data from 2010 to model ocean currents.
We drew 100 random scenarios with locations from a
uniform distribution over all ocean locations, as displayed in
figure 2. For each chosen start location, 20 floats were
evenly dispersed in a grid formation around the selected start
point. Starting the floats from slightly varied locations
allowed more diverse paths to emerge. To encourage
simplicity of calculation (by reducing expense in evaluating
both cost function values and algorithms), we chose to
model only 20 floats at each location. For this study, we
chose to run simulations at 100 different locations was
chosen rather than modeling a larger number of floats at
each location. This put more weight into investigating
reliability in many varied geographical locations, which is
valuable to marine monitoring research systems. Also, the
target-location cost function is meaningful for small
numbers of floats; as » increases into the hundreds, the
objective of moving all floats to the same location becomes
less useful. We ran the “mission” for a 30-day period broken
into timesteps of 5 days and considered both the coverage
maximization cost function and a second trial based on the
target-seeking objective with a destination 3 degrees north
and east of each deployment.

The experiments included two distinct simulation
scenarios. First, we considered a “long-horizon” planning
scenario that might be implemented with long-term current
predictions extrapolated from seasonal or historical data.
Here, we assumed long-range forecasts that were available
for the entire duration of the simulation, and were are
uploaded once at the start but never revised. No current
prediction product currently exists that could permit this
long-duration planning, so its purpose was purely
exploratory. As a more realistic case, we also considered a
“short-horizon” simulation that could be implemented now
using HYCOM 5-day forecasts. Here, plans were updated
at 5-day intervals based on the immediate results of the
previous communications cycle. This planning cycle was
identical to the length of each planning timestep. Without
the ability to predict beyond the next timestep, all
algorithms reduced to the greedy case. Thus, the short-
horizon trials will only compare the baseline Argo and
greedy approaches.
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In practice, the actual currents experienced by the float
will differ from the predictions. To account for this, we did
a second simulation based on hindcast products also
produced by HYCOM. The hindcast model assimilates data
from the immediate past and infers the most likely currents
for the previous five days. These retrospective estimates are
presumably more accurate than the forecast predictions.
The experiments that follow replicate forecast inaccuracy by
generating plans using realistic forecast data and then
running the actual simulation on the hindcast data.

VI. REesuLTS

Each current-sensitive algorithm generated paths with
lower cost than the baseline Argo method. The magnitude of
the advantage varied between the two cost functions.
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Fig 3a. charts performance over all trials using the coverage
maximization cost function. Results are measured using percent
difference between the algorithmic path’s utility values and the
baseline. Any positive value indicates an improvement in utility.
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Fig. 3b. charts performance over all trials using the target location
cost function. Again, results are expressed as percent difference
between algorithmic and naive planning. In this case, cost is
measured by distance to target, where a smaller number is better.
Negative percent differences, then, indicate improvement.



The two plots depict the cost function values for both goal
configurations: the first maximized coverage, and the second
was intended to send the floats to a specific target location.
Our  algorithms  achieved  dramatically  improved
configurations with respect to coverage maximization,
generating utilities at an average of twice or three times the
value of the baseline method, as displayed in figure 3a. The
box plots of figure 3a show the median and quartiles of the
data, while the whiskers indicate extrema. Red plus signs
show extreme outliers.

The target location cost function yielded less dramatic
results. While our algorithms still produced improved path
plans on average, the cost margin between the baseline and
algorithms was smaller, as displayed in 3b. The smaller
magnitude of the improvements is an effect of the structure
of our cost function, rather than the performance of the
algorithms themselves. Graphically, the performance for
motion toward a target location is comparable to that for the
coverage maximization objective.

A case study of one specific area just west of
Australia illustrates qualitatively the advantage to the
algorithmic methods. We simulated five floats over 30
days (with a timestep length of two days) using two depth
profiles: those generated by the greedy algorithm and the
naive Argo approach. The floats were initially deployed
in a single location, then allowed to follow depth profiles
according to the current Argo method (yellow) or our
algorithmic depth profiles (blue). Figure 4a shows that
our path plans were more effective in maximizing
coverage. The utility of the blue configuration is twice
that of the yellow, which would map onto figure 3 at a
100 percent difference. Figure 4b represents the same
case study run with the target location cost function, and
the algorithmic paths still performed better than the
current Argo methods. The difference in cost between the
algorithms modeled here corresponds to only a 60 percent
difference, quantitatively smaller than the dispersion
example. In practice, though, both trials show that
algorithmic path planning offers significant advantages.
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Fig. 4a Case study of 5 floats, just west of Australia. Yellow was
used for the trajectories generated by the baseline method, and blue
was used to show trajectories developed by the greedy algorithm.
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Fig. 4b Case study in figure 4 redone to direct the floats to a target
location southeast of their deployment location. Blue represents the
greedy algorithm, an improvement over the naive Argo approach,
shown in yellow.

The simulations run on forecast and hindcast data
showed promising reliability. The discrepancies between
expected (based on forecast data) and actual (based on
real-time currents) locations were generally low. Figure 5
gives the average location variation for each algorithm
after a 30 day simulation.



Latitude Longitude
Algorithm Displacement Displacement
Constant Depth 0.304 0.234
Greedy 0.36 0.226

Fig 5. details the average discrepancy in final locations of floats
based on differences between forecast and actual ocean current
data.

Further tests are necessary to fully explore the reliability
of forecast data for path planning.

VII. ConcLusioN

The majority of trials show that path-planning of some
sort is advantageous to the operation of submersible floats.
Neither path planning algorithm clearly dominated the other.
Any ability to control and direct floats’ movements in a
more directed manner will be valuable to the Argo operation
or similar future deployments.

Throughout the trials, the greedy algorithm performed
equally well or better than the non-myopic approaches; this
adds great practicality to path planning. Since the greedy
algorithm only requires current forecasts for the immediate
future, the small amount of prediction data made available
by HYCOM is completely sufficient. Operators can generate
discrete segments of depth profiles continuously and direct
the floats as desired using the forecasts available to us at a
given time. This process proves much more feasible than the
constant-depth model, which requires current velocities for
every time point in the simulation in advance.

Further research in this area should explore correlations
between algorithms’ performances and qualities of the
simulation location. The attempt at mapping utility to
physical aspects of deployment locations (distance from
shore, etc.) included in this paper demands further study.
Also, there may be benefits to a more probabilistic approach
that permits uncertainty over current predictions. This
would offer a path toward extrapolating for long-range
forecasts.
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