IN SITU INSTRUMENT OPPORTUNITIES

Michael Hecht
Jet Propulsion Laboratory, Caltech
March 29, 2011
Nomenclature

- While “in situ” and “remote are the common designations, *planetary surface* vs. *orbital* (or deep space) instruments may be a more useful distinction.

- *Sensor* suggests a transducer, while *instrument* is a means to perform an experiment, including sample handling.

- In addition to chemistry (inorganic and organic), biology, mineralogy, also have physical properties (size, shape, density, hardness, thermal conductivity, etc.) and atmospheric sciences.
What is in the roadmap: Table 1 (SIOSS challenges)

• **Instruments**
 - Integrated/miniatuized sensor suites

• **Sampling**
 - Subsurface sampling to >1m, cores to 10 cm
 - Preservation of sample biological and chemical integrity
 - Temperature control of frozen samples
 - Unconsolidated material handling in microgravity

• **Long term**
 - Nothing 2017-2022
 - Extreme environment technologies (vacuum, microgravity, radioactive, high/low temperature, high pressure, caustic…)

What is in the roadmap: Table 5 (Planetary Science needs)

- Mini spectrometer, filters, coatings
- Pulsed lasers (Raman, LIBS) and tunable CW (NIR/IR)
- Gas and elemental composition, APXS, IR, gamma, Raman, XRD, neutron…
- Geochronology
- Biological sensing
- Sample handling
- High power, extreme environments
What is in the roadmap: Table 8 (Sensor technology)

- Particles, fields, waves
- Sample Handling
 - Acquisition (subsurface and cores)
 - Transfer and delivery
 - Cryogenic & sealing (preserve volatiles, control and monitor cross-contamination)
- Chemistry and Mineralogy (beyond APXS)
 - Wet chemistry (measure dry weight, dissolved ions to ppm)
 - Elemental composition (LIBS, XRF) with spatial resolution
 - Mineralogy (Raman, XRD, IR/UV) with spatial resolution
 - Microscopy (SEM, hyperspectral)
- Organics and biology
 - Ppb detection (requires contamination control)
 - Mass range and resolution (<0.1 amu!)
 - Biomarker detection
- Planetary protection
Top *sensor* challenges (not in roadmap are yellow)

- Imaging with chemical identification, microscopic to macroscopic
- *In situ* geochronology
- *In situ* biomarker detection
- Ultra-high resolution mass spectroscopy (resolve isobars)
- Lower degree of difficulty:
 - Atmospheric instruments
 - Physical property instruments
 - Geophysics (seismometry, heat flow)
 - Terrestrial in situ instruments
Micro Analysis

SEM image Courtesy M. Velbel

ESEM/EDX of Calcium sulfate airborne particles (Iordanidis et al., Environ Geochem Health 30, p. 391, 2008)
Ultra High Resolution tholin mass spectra (ICR)

Distinguishing isobaric species allows identification of chemical pathways

Figure 1.1 Laser desorption ionization mass spectrum of CH₃ + N₂ tholins.
Top system challenges (not in roadmap are yellow)

- MSR curation (in situ)
 - Need to avoid alteration as well as loss of volatiles and cross-contamination. Requires thermal control
- Excavation technologies (rock, soil, ice)
- Extreme environments (Venus, Titan)
- Power technologies
 - kW and mW power sources
 - Non-solar, non-nuclear (e.g. wind, thermal, chemical)
- Planetary Protection and Contamination Control
 - Full-spacecraft sterilization
High Priority Sensor Technology Areas (non-biological)

- **Liquid phase analysis**
 - Wet chemistry
 - Lab-on-a-chip
 - Ice/water analysis

- **Mass spectroscopy**
 - Isobar-resolving (>100K resolving power)
 - Laser ablation mass spectroscopy
 - Geochronology

- **Chemical microscopy**
 - SEM/EDX
 - Small spot scanning XRF
 - Spectroscopic imaging
 - Chromophor microscopy
Lower priority sensor technology areas (non-biological)

- **Sounding**
 - Lidar and scanning lidar
 - LIBS and Raman
 - Neutrons and gammas
 - Acoustics
 - Seismometry
 - GPR
 - NMR
 - Remote thermal properties

- **Other**
 - Physical properties
 - Atmospheres
 - XRD
 - Electric and magnetic fields
Alignment with NASA capabilities, role, competitiveness

- All sensor and system technologies listed above could be well addressed by NASA with appropriate levels of R&A funding, except possibly:
 - Extreme environment operation (large investment, opportunity for cost-sharing)
 - Full-spacecraft sterilization
Game changing technologies (near tipping point is yellow)

- Ability to do things relegated to sample return, e.g.
 - In situ geochronology
 - Advanced life detection
 - Micro-analysis

- Non-nuclear power sources (e.g. thermal, chemical)

- Extreme environment operation (esp. Venus)

- New architectures:
 - Extreme surface mobility
 - Broadened access to deep space (flying instruments)
 - Ability to collect and store massive amounts of data and samples with high autonomy, uploading “apps” for data mining and analysis.
 - Fleets of miniature payloads
For discussion

- Time horizons for insertion
- Payoffs, risk, technical barriers and chance of success